微信扫码
与创始人交个朋友
我要投稿
❝人工智能 (AI) 正以惊人的速度重塑着各行各业,软件开发领域也不例外。近年来,AI 驱动的编程助手如雨后春笋般涌现,极大地改变了开发者的工作方式,使他们能够以前所未有的效率和精度编写代码。在这些 AI 驱动的助手领域中,编程 Agent 正日益受到关注,并有望彻底改变我们构建软件的方式。本系列合集,点击链接查看
作为 AI 领域的杰出人物,吴恩达教授对编程 Agent 的兴起表示了极大的兴趣。他认为,编程 Agent 有潜力通过自动执行繁琐的任务、提高代码质量和加速开发周期来彻底改变软件开发行业。
本文将深入探讨吴恩达对编程 Agent 的见解,
等关键概念。通过实际案例和深入分析,我们将探索这些技术如何协同工作,使编程 Agent 能够以更高的效率和有效性构建软件。
在传统的软件开发模式中,开发和测试通常由不同的个人或团队执行。这种分离旨在确保代码质量,因为测试人员可以从不同的角度提供客观的评估。
然而通过单一Agent模式很难实现这种隔离方案。为了解决这个问题,多Agent编码系统应运而生,为软件开发提供了一种更加协作和高效的方法。在多代理系统中,不同的“代理”被赋予特定的角色和职责,例如代码生成、测试和调试。这些代理可以相互交互和协作,以实现共同的目标,例如构建高质量的软件。
AgentCoder 是一个很好的多代理系统应用案例,它是一个利用多个代理进行迭代测试和优化的代码生成框架。
在 AgentCoder 中,一个代理充当代码生成器,负责根据给定的规范或用户需求生成代码片段。另一个代理充当代码测试器,评估生成的代码是否存在任何错误、漏洞或性能问题。
这两个代理协同工作,迭代地改进代码质量。代码生成器生成代码片段,代码测试器提供反馈,然后代码生成器根据该反馈改进其输出。这个循环会持续进行,直到生成满足所需规范的代码。
通过将开发和测试过程分离到不同的代理中,多代理系统为软件开发带来了许多好处:
让我们考虑一个简单的例子来说明多代理系统是如何工作的。假设我们想要创建一个计算两个数字之和的函数。我们可以使用多代理系统,其中一个代理负责生成代码,另一个代理负责测试代码。
# 代理 1:代码生成
def generate_sum_code():
code = """
def sum(a, b):
return a + b
"""
return code
# 代理 2:测试生成
def generate_tests():
tests = [
{"input": (2, 3), "expected_output": 5},
{"input": (-1, 1), "expected_output": 0},
{"input": (10, 20), "expected_output": 30}
]
return tests
# 运行代码并测试
code = generate_sum_code()
exec(code)
tests = generate_tests()
for test in tests:
assert sum(*test["input"]) == test["expected_output"]
在这个例子中,代理 1 生成一个简单的 sum
函数,代理 2 生成一组测试用例来验证函数的正确性。通过这种方式,开发和测试过程是隔离的,但它们协同工作以确保生成的代码的质量。
调试是软件开发的一个不可分割的环节,即使在编程 Agent 时代也是如此。识别和修复代码中的错误对于确保软件的可靠性和正确性至关重要。虽然编程 Agent 可以生成代码,但它们仍然可能犯错,因此有效的调试技术至关重要。
逐行测试是一种人类常用的调试技术,它同样可以应用于编程 Agent 生成的代码。通过在代码执行过程中逐行验证运行时执行,Agent可以准确地查明错误发生的位置以及代码行为偏离预期结果的位置。
LDB(大型语言模型调试器)是一种利用逐行测试来调试大型语言模型 (LLM) 生成的代码的系统。
LDB 系统的工作原理是将 LLM 生成的代码作为输入,并通过解释器逐行执行。对于每一行,LDB 都会检查代码的运行时执行是否与预期行为一致。如果不一致,LDB 会将该行标记为潜在错误,并向开发人员提供有关该问题的详细信息。
通过利用逐行测试,LDB 可以识别各种类型的错误,包括:
为了在软件开发领域取得成功,拥有结构化的工作流程和专门的工具至关重要。软件工程师依靠版本控制系统、代码编辑器和测试框架等工具来有效地管理软件开发的复杂性。同样,编程 Agent 可以受益于专用的研发工作流程,以提高其性能和效率。
SWE-agent(Agent-Computer Interfaces Enable Automated Software Engineering)是一个旨在通过提供自动化研发工作流程来增强编程 Agent 功能的系统。
SWE-agent 系统为编程 Agent 提供了全面的开发环境,包括:
通过为编程 Agent 提供专用的研发工作流程,SWE-agent 使它们能够:
让我们考虑一个实际的例子来说明专用的研发工作流程如何使编程 Agent 受益。假设我们正在构建一个 Web 应用程序,并且我们希望自动化创建新页面的过程。
使用 SWE-agent,我们可以创建一个工作流程,该工作流程将以下任务自动化:
通过自动化这些任务,SWE-agent 使开发人员能够专注于更高级别的任务,例如设计和用户体验。
随着编程 Agent 的不断发展,我们可以期待看到它们在软件开发中发挥越来越重要的作用,使开发人员能够专注于更高级别的任务,并推动创新。从简化代码生成到增强调试功能,编程 Agent 必将塑造软件开发的未来。
今天的内容就到这里,如果觉得还行,可以来一波三连,感谢!
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-01-22
为什么AI正让垂直SaaS的机会扩大10倍?
2025-01-21
「AI+企业服务」市场很快会迎来爆发
2024-12-05
SaaS+AI,开启企业软件下一个十年
2024-11-28
双城之辩:SaaS+Agentic AI?
2024-11-27
从SaaS到AI Agent:垂直AI Agents的未来比你想象得更大!
2024-11-24
「深度」Y Combinator:垂直领域AI Agent的市场规模将是SaaS的十倍
2024-11-05
为什么垂直领域 AI Agent 是下个十亿美金 SaaS的机会?
2024-10-25
企业级SaaS「工作台」的设计观察
2023-06-29
2023-07-01
2024-06-28
2024-06-10
2024-06-05
2024-06-26
2024-05-03
2024-06-08
2024-06-26
2024-06-30