微信扫码
添加专属顾问
我要投稿
(ACL 2022 outstanding paper)
1.1 太长不看版
样本顺序影响结果
1.2 仔细说明版
样本顺序指的是在训练机器学习模型时,输入样本的排列方式。在大多数传统的监督学习场景中,模型会被训练在大量标记好的数据上,样本的顺序通常被认为是无关紧要的,因为模型通过梯度下降等优化算法学习数据中的模式,理论上不会受到样本顺序的影响。
然而,在**少量样本学习(few-shot learning)或上下文学习(in-context learning)**的设置中,样本顺序变得非常重要。在这些设置中,模型不是通过梯度下降来调整参数,而是通过观察少量的示例来生成预测。这些示例被用作上下文或提示(prompts),直接引导模型对新的输入做出反应。因此,即使是相同的几个样本,如果它们的顺序不同,也可能导致模型做出完全不同的预测。
例如,假设我们有一个分类任务,需要模型识别文本的情感倾向(积极或消极)。如果我们提供给模型两个示例:一个积极和一个消极的评论,那么这两个示例的顺序可能会影响模型对新评论情感的判断。如果模型先看到消极的评论,它可能会对后续的评论倾向于预测消极的结果,反之亦然。
论文中,作者们通过实验发现,在少量样本学习中,样本顺序会让预训练语言模型的性能在SOTA和随机猜之间波动。他们进一步提出了一种方法,通过构建人工开发集并使用熵统计量来识别出性能较好的样本顺序,也即构建更好的prompt,从而提高了模型的预测准确性和鲁棒性
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-07-13
AI 智能体协议解构:MCP、A2A、AG-UI
2025-07-13
AI圈演义:我躺平两年多,终于看懂了这场“智能的游戏”
2025-07-13
结果交付:企业级LLM+MCP+RAG+Agent融合架构正在重构AI基建标准!
2025-07-13
RAG-Anything:多模态RAG的全能王者,AI文档处理的终极形态!
2025-07-13
深度|a16z内部复盘:AI社交产品或许从根本上就不成立,AI只是模拟“表达”,从未触碰“关系”本身
2025-07-13
飞书搞了个AI分级体系,一上线就把一堆产品打回原形了
2025-07-13
Auto Agent:气宗还是剑宗?——Workflow 还是强大模型?
2025-07-13
“内卷”到向量空间:Qwen3-Embedding 是真香还是跟风?
2025-05-29
2025-05-23
2025-04-29
2025-04-29
2025-05-07
2025-05-07
2025-05-07
2025-06-01
2025-05-07
2025-04-17
2025-07-13
2025-07-13
2025-07-13
2025-07-13
2025-07-10
2025-07-10
2025-07-10
2025-07-09