微信扫码
与创始人交个朋友
我要投稿
Attention是如何计算的
上一篇文章讲到了,我们将文本切分成一个个token后,通过查词嵌入矩阵将token转化成了向量,在Qwen2中向量的维数3584维;为简化计算,我们假设token向量的维数为4维,下图为计算演示。
attention的目标是在预测当前token时,我们用整个句子中的token(编码后向量)的加权平均值表示。如何计算这个值呢,我们先将token的向量转化为,Q(查询),K(键),V(值)三个向量。然后在计算时,我们用当前token的Q与其它token的K计算相似度score,最后把所有token的score*V的值相加,就是得到加权平均值啦。
比如:我 爱 人工智能,三个token,下面是计算score的过程:
上面就是attention计算过程的简单描述,形式上就是做这个计算,具体包含一些优化的细节,这里不做介绍。大家有没有发现,这样计算相同的token在不同位置好像贡献没有差别哦,“我 爱 ai,我 爱 人工智能“,这两个”爱“计算出来的结果一样,为了区别所以加入了位置编码,同时位置编码也是约束大模型处理长度的重要因素,感兴趣的可以交流哦。
多头自注意力
有了注意力,为什么要有个多头注意力啊?其实就跟人类评价一个食物一样,会从视觉、嗅觉、味觉上多个方面评价,因此注意力可不可以有多个角度呢,后面验证了从多个角度处理确实可行。具体是怎么做的呢?
在Qwen-7B中,隐藏层的维数是3584,把它却分成28份,每份128维;将他们分别做上节介绍的attention加权平均得到28个128维的新向量;再拼接起来就又是3584维了,这样就做了多头注意力操作,是不是很简单。
Qwen2-7B中自注意力模块有多少参数
上一篇文章中,我们计算出了Qwen2-7B中词嵌入矩阵的参数量,这篇文章中,我们来看一下其自注意力模块包含多少参数。首先我们给出其配置文件:
{
"architectures": [
"Qwen2ForCausalLM"
],
"attention_dropout": 0.0,
"auto_map": {
"AutoModel": "modeling_qwen.Qwen2Model",
"AutoModelForCausalLM": "modeling_qwen.Qwen2ForCausalLM",
"AutoModelForSequenceClassification": "modeling_qwen.Qwen2ForSequenceClassification"
},
"bos_token_id": 151643,
"eos_token_id": 151643,
"hidden_act": "silu",
"hidden_size": 3584,
"initializer_range": 0.02,
"intermediate_size": 18944,
"max_position_embeddings": 131072,
"max_window_layers": 28,
"model_type": "qwen2",
"num_attention_heads": 28,
"num_hidden_layers": 28,
"num_key_value_heads": 4,
"rms_norm_eps": 1e-06,
"rope_theta": 1000000.0,
"sliding_window": 131072,
"tie_word_embeddings": false,
"torch_dtype": "float32",
"transformers_version": "4.41.2",
"use_cache": true,
"use_sliding_window": false,
"vocab_size": 151646
}
比较重要的参数是隐藏层维度、attention中间层维数,隐藏层层数,分别为如下参数hidden_size:3584, intermediate_size:18944, num_hidden_layers: 28, num_key_value_heads:4,num_attention_heads: 28
Qwen2-7B大体采用的是左边这一半流程,attention(注意力) + Feed Forward(扩维再降维的线性变换)
# Qwen2Attention
self.num_heads = config.num_attention_heads # 28
self.head_dim = self.hidden_size // self.num_heads # 128
self.num_key_value_heads = config.num_key_value_heads # 4
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
可以看出,有四个参数:q_proj, k_proj, v_proj, o_proj,前三个是用在将token向量映射为attention的输入,最后一个是将attention的输出做映射,这些操作都是为了增加语义表示,参数量qo相同kv相同,因此参数量为(还有3个bias):
2*3584*(28*128)+ 2*3584*(4*128)+(3584+2*4*128)= 29364736
# Qwen2MLP
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
这一部分只是将上一步的输出,先扩维再降维,具体计算过程我们不关心,他有三个参数gate_proj,up_proj,down_proj, 前两个是用来升维的,后一个是用来降维的,把维数控制在3584,所以参数量为:
3*3584*18944=203685888
由于有28层堆叠,那么attention总共的参数量就是:
28*(29364736+203685888)=6525417472
即attention总共有6.52B参数,上一篇文章介绍词嵌入有0.54B参数,总共就是7.06B参数。
Qwen2-7B的参数就是这样构成的,虽然有70亿这么多,但是理解了它的结构后,就能把握里面参数的构成,简单说就是几个大矩阵在进行变化,并不神秘。
如果对内容有什么疑问和建议可以私信和留言,也可以添加我加入大模型交流群,一起讨论大模型在创作、RAG和agent中的应用
欢迎关注我的公众号“哎呀AIYA”,每天一篇大模型(LLM)文章来锻炼我们的思维,简单的叙述,不简单的内涵,提升自己。
推荐阅读
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-12-23
2025年AI大模型的趋势与洞察
2024-12-23
阶跃星辰完成数亿美元 B 轮融资,发力「超级模型」+「超级应用」
2024-12-23
百川智能发布全链路领域增强金融大模型Baichuan4-Finance,金融能力领先GPT-4o近20%
2024-12-22
AI“落地”系列——Agent
2024-12-22
LAMBO:AI大模型赋能边缘智能
2024-12-22
如何从头建立一个通用AI智能体应用?
2024-12-22
不是炒作GenAI!终于有 BERT 的替代品了
2024-12-21
Anthropic最新:AI Agents 2024年度总结!
2024-05-28
2024-04-26
2024-08-13
2024-08-21
2024-07-09
2024-06-13
2024-08-04
2024-04-11
2024-07-18
2024-07-01