AI知识库

53AI知识库

学习大模型的前沿技术与行业应用场景


大模型Agent实战:基于AutoGen的一些尝试
发布日期:2024-07-18 20:54:46 浏览次数: 1941



直接看一个例子吧:

模型llama3

prompt

(核心描述)

你是一个智能助手,可以通过拆解任务来解决问题,建议你通过执行Python代码来实现任务,如果代码成功执行后任务仍未解决,分析问题,重新审视你的假设,收集你需要的额外信息,并考虑尝试不同的方法。当你找到答案时,仔细验证答案。如果可能的话,在你的回复中包含可验证的证据。当一切都完成后,回复结束
任务

绘制NVDA和特斯拉股价本年迄今变化图。

将绘图保存到名为plot.png的文件中

角色
assistant:大模型助手;
user_proxy:用户代理

接下来先通过user_proxy对assistant发起提问,然后开始整个任务的执行:

首先user_proxy发起提问:


user_proxy (to assistant):
绘制NVDA和特斯拉股价本年迄今变化图。将绘图保存到名为plot.png的文件中


assistant回复:

assistant (to user_proxy):
To achieve this task, we'll need to collect the stock price data for NVDA (NVIDIA) and TSLA (Tesla) for this year and then use a Python script to plot the data.
First, let's collect the data using the `yfinance` library. Here's the code to get the data:```python# filename: get_stock_data.pyimport yfinance as yf
start_date = '2023-01-01'end_date = '2023-12-31'
nvda_data = yf.download('NVDA', start=start_date, end=end_date)tsla_data = yf.download('TSLA', start=start_date, end=end_date)
print(nvda_data.head())print(tsla_data.head())```Please execute this code to get the stock price data for NVDA and TSLA for this year. The `print` statements will output the first few rows of the data.
Once you've executed the code, please provide the output, and I'll proceed to create the plot.
(Note: If you don't have the `yfinance` library installed, you can install it using `pip install yfinance`)

然后assistant开始执行:

Provide feedback to assistant. Press enter to skip and use auto-reply, or type 'exit' to end the conversation: 

>>>>>>>> NO HUMAN INPUT RECEIVED.
>>>>>>>> USING AUTO REPLY...
>>>>>>>> EXECUTING CODE BLOCK (inferred language is python)...user_proxy (to assistant):
exitcode: 1 (execution failed)Code output: Traceback (most recent call last):File "/Users/lvlin/code/agent_test/demo/autogen_demo/coding_local/get_stock_data.py", line 2, in <module>import yfinance as yfModuleNotFoundError: No module named 'yfinance'

这里比较厉害了,assistant发现我环境没有yfinance,程序并没有终止,这时assistant再次向user_proxy交流,说明你环境缺几个包需要安装一下:

assistant (to user_proxy):
It looks like the `yfinance` library is not installed. Let's fix that!
Here's the updated code to install the `yfinance` library and then collect the stock price data:```python# filename: get_stock_data.pyimport os
# Install yfinance library if not already installedos.system('pip install yfinance')
import yfinance as yf
start_date = '2023-01-01'end_date = '2023-12-31'
nvda_data = yf.download('NVDA', start=start_date, end=end_date)tsla_data = yf.download('TSLA', start=start_date, end=end_date)
print(nvda_data.head())print(tsla_data.head())```Please execute this code to install the `yfinance` library and get the stock price data for NVDA and TSLA for this year.
(Note: If you're using a virtual environment, make sure to activate it before running the code)

当然这里有一些小问题,比如模型把时间搞错了,我让它绘制的是今年的趋势,它识别成2023了,这个可以先忽略,我们可以在prompt告诉它今天的时间,模型就可以正确识别时间了;

然后assistant继续执行

Collecting yfinanceUsing cached yfinance-0.2.40-py2.py3-none-any.whl.metadata (11 kB)  XXXX开始安装缺的包

安装完以后,assistant再次完善代码,加上了绘图相关代码

assistant (to user_proxy):
Now that we have the stock price data, let's create the plot.
Here's the updated code to plot the data:```python# filename: plot_stock_prices.pyimport yfinance as yfimport matplotlib.pyplot as plt
start_date = '2023-01-01'end_date = '2023-12-31'
nvda_data = yf.download('NVDA', start=start_date, end=end_date)tsla_data = yf.download('TSLA', start=start_date, end=end_date)
plt.figure(figsize=(12, 6))plt.plot(nvda_data.index, nvda_data['Close'], label='NVDA')plt.plot(tsla_data.index, tsla_data['Close'], label='TSLA')plt.xlabel('Date')plt.ylabel('Stock Price (USD)')plt.title('NVDA and TSLA Stock Prices')plt.legend()plt.savefig('plot.png')plt.show()

然后再次执行,yf.download超时了,assistant进行了代码优化

assistant (to user_proxy):
It looks like the execution timed out. Let's try to optimize the code to make it more efficient.
Here's the updated code:```python# filename: plot_stock_prices.pyimport yfinance as yfimport matplotlib.pyplot as plt
start_date = '2023-01-01'end_date = '2023-12-31'
nvda_data = yf.download('NVDA', start=start_date, end=end_date, progress=False)tsla_data = yf.download('TSLA', start=start_date, end=end_date, progress=False)
plt.figure(figsize=(12, 6))plt.plot(nvda_data.index, nvda_data['Close'], label='NVDA')plt.plot(tsla_data.index, tsla_data['Close'], label='TSLA')plt.xlabel('Date')plt.ylabel('Stock Price (USD)')plt.title('NVDA and TSLA Stock Prices')plt.legend()plt.savefig('plot.png')plt.close()# Close the figure to free up memory```I added the `progress=False` parameter to `yf.download()` to disable the progress bar, which can slow down the execution. I also added `plt.close()` to close the figure after saving it to free up memory.
Please execute this code again to generate the plot and save it to a file named `plot.png`.
If you still encounter issues, please let me know!

最后在反复调整之后,最终画出了股票趋势图


整个过程我们可以设置是否人为介入,如果设置为NEVER,就是模型自己反复在调整自己的策略,规划、反思、执行;如果设置了人为介入,可以在模型需要我们反馈时进行矫正或者提一些建议思路,模型都会听取进行改正。

虽然例子很简单,这个场景的代码人工写可能比模型快很多,但还是挺震撼的,整个过程没有人为干涉全部是模型一点一点自己实现的,让我们看到了大模型agent的一些潜力,未来可期

后面有机会再和大家分享一下agent在实际场景中的一些使用情况


53AI,企业落地应用大模型首选服务商

产品:大模型应用平台+智能体定制开发+落地咨询服务

承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业

联系我们

售前咨询
186 6662 7370
预约演示
185 8882 0121

微信扫码

与创始人交个朋友

回到顶部

 
扫码咨询