微信扫码
与创始人交个朋友
我要投稿
解决方案
PagedAttention 算法:一种受操作系统虚拟内存和分页技术启发的注意力算法,允许在非连续的内存空间中存储连续的键和值。
vLLM 系统:一个基于 PagedAttention 构建的高吞吐量分布式 LLM 服务引擎,通过块级内存管理和抢占式请求调度,实现了高效的内存利用。
内存管理:vLLM 通过将 KV 缓存划分为固定大小的块,并在需要时动态分配这些块,从而减少了内存碎片化和浪费。
解码算法支持:vLLM 支持多种解码算法,如并行采样和束搜索(beam search),通过内存共享机制进一步提高内存效率。
吞吐量提升:vLLM 在不同模型和工作负载上的评估显示,其吞吐量比现有的最先进系统(如 FasterTransformer 和 Orca)提高了 2-4 倍。
内存效率:通过 PagedAttention 和 vLLM 的内存管理策略,显著减少了内存浪费,提高了内存利用率。
延迟保证:在提高吞吐量的同时,vLLM 保持了与现有系统相似的延迟水平。
分布式执行:vLLM 支持在分布式 GPU 上执行大型 LLM,通过模型并行策略进一步提高扩展性。
内存管理优化:vLLM 的内存管理策略可以应用于其他具有类似内存需求的 GPU 工作负载,尽管这需要针对具体工作负载进行优化。
decoding算法扩展:vLLM 展示了对多种解码算法的支持,未来可以进一步扩展以支持更多复杂的解码场景
视频地址:
https://www.bilibili.com/video/BV1TN4y1B7Fs
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-05-28
2024-04-26
2024-08-13
2024-08-21
2024-07-09
2024-08-04
2024-04-11
2024-06-13
2024-07-18
2024-07-01
2024-12-21
2024-12-21
2024-12-21
2024-12-16
2024-12-06
2024-12-03
2024-12-01
2024-11-29