微信扫码
添加专属顾问
我要投稿
RLHF的基本概念
首先,我们来了解一下什么是RLHF。简单来说,RLHF是一种结合了强化学习和人类反馈的学习方法。在传统的强化学习中,智能体通过与环境的交互来学习如何做出最优决策。而RLHF则在此基础上引入了人类反馈,使得智能体能够更好地理解人类的意图和偏好,从而做出更加符合人类期望的决策。
预训练阶段
在GPT模型的预训练阶段,模型会学习大量的文本数据,从而掌握语言的基本规律。然而,由于数据来源的多样性和复杂性,模型在学习过程中可能会产生一些不符合人类价值观的输出。这时候,RLHF就可以发挥作用了。
人类反馈收集
为了纠正模型的错误输出,我们需要收集人类反馈。这可以通过多种方式实现,例如:
人工标注:邀请专业的标注人员对模型的输出进行评价,给出正面或负面的反馈。
在线评测:将模型的输出展示给普通用户,让他们对输出进行评价。
众包平台:利用众包平台收集大量用户的反馈数据。
强化学习优化
收集到人类反馈后,我们可以将其转化为奖励信号,用于指导模型的优化。具体来说,我们可以将正面反馈视为正奖励,负面反馈视为负奖励。然后,利用强化学习算法(如PPO)来更新模型参数,使其在未来的输出中尽量避免负奖励,增加正奖励。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-03-13
OpenAI发布智能体开发套件:AI能自主操作计算机,但建议用户“监工”
2025-03-13
浅谈 Agent、MCP、OpenAI Responses API
2025-03-13
滴滴滴DeepSeek!三场活动金句已送达:DeepSeek is a Feature,not a Product
2025-03-13
DeepSeek大模型原创核心技术解读
2025-03-12
Manus工作原理揭秘:解构下一代AI Agent的多智能体架构
2025-03-12
谷歌推出 Gemma 3 了
2025-03-12
Anthropic推出模型上下文协议MCP,解锁智能体万能手接口
2025-03-12
为何模型上下文协议 (MCP) 最终会获胜?[译]
2024-08-13
2024-06-13
2024-09-23
2024-08-21
2024-07-31
2024-05-28
2024-08-04
2024-04-26
2024-07-09
2024-09-17
2025-03-12
2025-03-12
2025-03-10
2025-03-10
2025-03-10
2025-03-10
2025-03-08
2025-03-08