微信扫码
添加专属顾问
我要投稿
图 1 大模型对软件领域的影响
1、编程事务性工作的普遍替代
2、知识传递模式的革新
死磕 Copilot 模式四大核心技术难点
图 2 Copilot 阶段通义灵码的核心功能架构
当我们聚焦现有代码助手产品技术发展的现状,以及技术细节,就会发现未来需要攻坚的难点主要有四点:
生成的准确度:准确率是决定产品能否应用于生产的关键因素;
推理性能:代码生成速度和整体性能的提升;
数据个性化:适应不同企业和个人的编程习惯;
图 3 通义灵码补全准确度的方式
通常,采用多个模型组合来保证时延的优化是比较靠谱的做法。大参数的模型,具有广泛的知识面和强大的编程能力,能够获取实时支持;各种加速和缓存技术,包括在端侧使用流式补全也可以降低延时;使用本地缓存、服务端缓存,再加上推理加速等多种技术,可以兼顾实现速度和准确性。这些措施共同作用,能让通义灵码能提供高效、准确的编程辅助。
图 4 通义灵码提升推理性能的方式
图 5 在代码补全、研发问答两方面提升推理性能
在代码补全中,对于相似逻辑的编写,可以用企业已写过的优质逻辑代码来生成,避免重复造轮子。在自研框架的使用中,尤其是在前端开发,每个企业的前端框架往往不尽相同,如果直接使用基于开源数据训练的模型,生成的结果可能会有瑕疵,可以通过 RAG 技术,使员工在代码补全过程中实时获取所需的参考范例,从而生成符合企业规范的代码。
代码补全场景更加关注时延,力求将检索时间降低到 100 毫秒以内,技术实现有一定难度。而研发问答场景更注重精准度,目标是召回率达到 70 %以上甚至 90 %以上,以提高回答效率。尽管优化目标不同,两者在基础设施上都涉及知识库管理、 RAG 流程、推理引擎和向量服务,这也是通义灵码重点优化的方向。
加密端侧代码,确保即使请求被拦截也无法复原代码;
制定本地向量存储和推理全部在本地完成的策略,除非是主动上传的企业级数据,否则代码不会上传到云端,保证了云端没有代码残留,即使黑客攻破了通义灵码集群,也无法获取用户数据,确保了安全性;
第一阶段:单工程问答 Agent
第二阶段:编码 Agent
第三阶段:测试 Agent
第四阶段:Multi-Agent
接下来,多 Agent 基于 AI 调度共同完成任务,就可以实现更复杂的任务管理和协作实现,从需求->代码->测试的全流程自主化。我们的终极目标是 AI 程序员的水平,类似于 Devin 项目。这一阶段将涵盖更复杂的编程任务,需要更高级的 AI 调度和协同能力。
Code Agent 落地门槛:问题解决率至少 50 %以上
未来的软件研发工具形态
首先,通过结构化的任务管理,模拟人类团队分解大型任务的行为,实现高效协作;
其次,简化工作流程,将复杂任务细化为小任务,并借助 Agent 特性逐一执行;
最后,高效执行任务,让每个智能体专注自身任务并协同工作,共同完成复杂任务。
底层为 AI 基建层,为中层的通义灵码与AI程序员等提供基础支持,涵盖运行环境、模型推理服务、模型微调 SFT、检索增强 RAG、企业管理功能及核心模型。在 AI 基建层,工具共享、不同模型各司其职,这进一步验证了我们的技术演进路线。
阿里云内部代码助手落地实况
为了进一步提升效果,我们还需要收集和处理业务单位的反馈。在实际应用中,开发者们可能会遇到一些“ bad case ”,即插件生成的代码不符合他们的期望或需求。为了优化插件的性能和准确性,我们需要基于具体场景进行调优。我们会不断优化通义灵码并持续发布先进的产品,向着大模型赋能软件开发的终极形态坚定地走下去。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-08-13
2024-06-13
2024-08-21
2024-09-23
2024-07-31
2024-05-28
2024-08-04
2024-04-26
2024-07-09
2024-09-17
2025-04-20
2025-04-18
2025-04-16
2025-04-13
2025-04-13
2025-04-13
2025-04-12
2025-04-12