微信扫码
添加专属顾问
我要投稿
本篇介绍为什么 LLM 推理加速有 KV Cache 而没有 Q Cache。
简单来说,LLM 在 decoding 阶段的每次推理只会用到当前的 Q,这次用的 Q 下次不会用到,所以不用 Cache Q。
但是每次都要用到当前和过去所有的 KV,这次用到的 KV 下次马上就要再用一次,所以 Cache KV 可以加速推理。
下面说明原因:
直到这一步,K 和 Q 看上去都很对称。轮换一下 K 和 Q 对结果没有本质影响。
这是没有 Causal Mask(因果掩码)的情况。
无论有没有 Causal Mask,Q 和 K 在结果中都是不对称的。
在序列的 t 位置,Q 只有当前位置的 ??q_t 参与了计算,而 K 和 V 多个位置参与了计算,所以需要 KV Cache,而不需要 Q Cache。
在没有 Causal Mask 时,计算 t 位置的 Attention 需要未来的 KV,这在实际进行自回归推理时无法得到;加上 Causal Mask 之后,只需要 1,2,…,t 位置的 KV 就可以进行推理。
来源:https://www.zhihu.com/question/653658936/answer/3545520807
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-15
Qwen3:0.6b 性能小钢炮
2025-09-15
别再误会MCP了!一篇写给AI工程师的硬核“辟谣”指南
2025-09-14
为什么说阿里巴巴正转身“AI科技公司”
2025-09-14
阿里云赢 AI 云的真相:不是模型比人强,是把 “用 AI 的门槛” 拆成了 “可复制的效率”
2025-09-14
一万两千字,解读智能应用开发最佳实践
2025-09-14
AI 新玩法:GraphRAG × Ollama 打造更聪明的智能体
2025-09-14
阿里云视觉多模态理解大模型开发训练部署
2025-09-14
2025.9 回顾过去1年的LLM圈进展 与 展望
2025-08-21
2025-06-21
2025-08-21
2025-08-19
2025-06-19
2025-07-29
2025-09-08
2025-08-19
2025-08-20
2025-07-04
2025-09-14
2025-09-12
2025-09-11
2025-09-11
2025-09-09
2025-09-09
2025-09-08
2025-09-08