微信扫码
添加专属顾问
我要投稿
01。
概述
02。
技术规格与能力
03。
应用与用例
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-jpn-it")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-2b-jpn-it",
device_map="auto",
torch_dtype=torch.bfloat16,
)
messages = [
{"role": "user", "content": "マシーンラーニングについての詩を書いてください。"},
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True, return_dict=True).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
generated_text = tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0]print(generated_text.strip())
04。
限制与伦理考量
05。
结语
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-05-05
AI Agent"社交网络"来了!最新研究揭示AI Agent通信协议全景图
2025-05-05
慢生意快迭代:滴普科技的7年反共识「突围」
2025-05-01
Agent2Agent 协议详解:Google 引领打造通用 AI 代理通信标准
2025-05-01
万字一手实测Prover-V2-671B数学证明模型
2025-04-30
o3 深度解读:OpenAI 终于发力 tool use,agent 产品危险了吗?
2025-04-30
深度解析OpenAI和Google智能体白皮书及背后两种路线|大模型研究
2025-04-30
MCP入门指南:大模型时代的USB接口
2025-04-30
通俗易懂的梳理MCP的工作流程(以高德地图MCP为例)
2024-08-13
2024-06-13
2024-08-21
2024-09-23
2024-07-31
2024-05-28
2024-08-04
2024-04-26
2024-07-09
2024-09-17
2025-04-30
2025-04-29
2025-04-29
2025-04-29
2025-04-28
2025-04-28
2025-04-28
2025-04-28