微信扫码
添加专属顾问
我要投稿
探索Agno框架如何简化OpenAI兼容Agent服务的开发流程。 核心内容: 1. 无需修改客户端即可实现OpenAI API兼容的工具调用 2. 项目展示的三层架构设计及其关键技术点解析 3. 快速体验指南与场景扩展应用,展示Agno框架的独特优势
今天给大家分享一个技术Demo,展示如何基于Agno框架快速构建一个OpenAI兼容API服务,并通过MCP工具调用实现功能扩展。这个方案的最大价值在于:客户端无需任何修改,只要兼容OpenAI API,就能直接调用配置好的工具能力!
https://github.com/lemonhall/agno_mcp_openai_demo
注释:caldav-mcp,因为功能测试的原因,暂时未发布
传统Agent开发中,客户端需要:
而通过本项目展示的方案: ✅ 客户端只需调用标准OpenAI API ✅ 所有工具调用逻辑封装在服务端 ✅ 无需客户端挂载任何MCP工具 ✅ 保持完全的API兼容性
项目采用三层架构:
客户端 → OpenAI兼容API → Agno Agent → MCP工具服务
.
├── simple_openai_agent_api.py # 主服务入口
└── agno_openai_adapter.py # OpenAI适配层实现
pip install fastapi uvicorn agno mcp
python simple_openai_agent_api.py
response = client.chat.completions.create(
model="agno-agent",
messages=[{"role": "user", "content": "查询我的日程"}]
)
虽然Demo以日历管理为例(因为这个场景简单易懂),但该方案适用于:
这个Demo展示了Agno框架在构建企业级Agent服务时的独特优势。通过OpenAI兼容层,我们可以:
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-14
揭秘Function calling:详解大模型调用工具底层原理,四大优化方案提升Agent性能!
2025-04-14
MemInsight:结构化记忆增强,让 LLM Agent更智能
2025-04-14
微软论文:API Agents和GUI Agents的分歧与融合
2025-04-14
从“人驱动”到“模型驱动”:聊聊 Agent 在 2025 年的爆发与挑战
2025-04-14
MCP 正当时:FunctionAI MCP 开发平台来了!
2025-04-14
MCP协议深度解读:技术创新正以前所未有的速度突破
2025-04-14
大模型量化技术:主流方法解析与代码实践
2025-04-14
面向 MoE 和推理模型时代:阿里云大数据 AI 产品升级发布
2024-08-13
2024-06-13
2024-08-21
2024-09-23
2024-07-31
2024-05-28
2024-08-04
2024-04-26
2024-07-09
2024-09-17
2025-04-13
2025-04-13
2025-04-13
2025-04-12
2025-04-12
2025-04-11
2025-04-11
2025-04-10