微信扫码
与创始人交个朋友
我要投稿
欢迎来到我们提示工程系列的第五篇文章。在之前的文章中,我们探讨了文本提示技术和多语言提示技术。今天,我们将跨越单一模态的界限,深入探讨多模态提示技术。这种技术允许AI系统同时处理和理解多种类型的数据,如文本、图像、音频等,从而创造出更加智能和versatile的应用。让我们一起探索如何设计和实现能够理解和生成多模态信息的AI系统。
在我们深入技术细节之前,让我们先理解为什么多模态AI如此重要:
多模态AI的核心是能够处理和整合来自不同模态的信息。这通常涉及以下几个关键步骤:
现在,让我们深入探讨一些具体的多模态提示技术。
这是最常见的多模态提示技术之一,它结合了图像和文本信息。
import openai
import base64
def image_text_prompting(image_path, text_prompt):
# 读取图像并转换为base64
with open(image_path, "rb") as image_file:
encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
prompt = f"""
[IMAGE]{encoded_image}[/IMAGE]
Based on the image above, {text_prompt}
"""
response = openai.Completion.create(
engine="davinci",
prompt=prompt,
max_tokens=150,
temperature=0.7
)
return response.choices[0].text.strip()
# 使用示例
image_path = "path/to/your/image.jpg"
text_prompt = "describe what you see in detail."
result = image_text_prompting(image_path, text_prompt)
print(result)
这个例子展示了如何将图像信息编码到提示中,并指导模型基于图像内容回答问题或执行任务。
这种技术结合了音频和文本信息,适用于语音识别、音乐分析等任务。
import openai
import librosa
def audio_text_prompting(audio_path, text_prompt):
# 加载音频文件
y, sr = librosa.load(audio_path)
# 提取音频特征(这里我们使用MEL频谱图作为示例)
mel_spectrogram = librosa.feature.melspectrogram(y=y, sr=sr)
# 将MEL频谱图转换为文本表示(这里简化处理,实际应用中可能需要更复杂的编码)
audio_features = mel_spectrogram.flatten()[:1000].tolist()
prompt = f"""
Audio features: {audio_features}
Based on the audio represented by these features, {text_prompt}
"""
response = openai.Completion.create(
engine="davinci",
prompt=prompt,
max_tokens=150,
temperature=0.7
)
return response.choices[0].text.strip()
# 使用示例
audio_path = "path/to/your/audio.wav"
text_prompt = "describe the main instruments you hear and the overall mood of the music."
result = audio_text_prompting(audio_path, text_prompt)
print(result)
这个例子展示了如何将音频特征编码到提示中,并指导模型基于音频内容执行任务。
视频是一种复杂的多模态数据,包含了图像序列和音频。处理视频通常需要考虑时间维度。
import openai
import cv2
import librosa
import numpy as np
def video_text_prompting(video_path, text_prompt, sample_rate=1):
# 读取视频
cap = cv2.VideoCapture(video_path)
# 提取视频帧
frames = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if len(frames) % sample_rate == 0:
frames.append(frame)
cap.release()
# 提取音频
y, sr = librosa.load(video_path)
# 提取视频特征(这里我们使用平均帧作为简化示例)
avg_frame = np.mean(frames, axis=0).flatten()[:1000].tolist()
# 提取音频特征
mel_spectrogram = librosa.feature.melspectrogram(y=y, sr=sr)
audio_features = mel_spectrogram.flatten()[:1000].tolist()
prompt = f"""
Video features:
Visual: {avg_frame}
Audio: {audio_features}
Based on the video represented by these features, {text_prompt}
"""
response = openai.Completion.create(
engine="davinci",
prompt=prompt,
max_tokens=200,
temperature=0.7
)
return response.choices[0].text.strip()
# 使用示例
video_path = "path/to/your/video.mp4"
text_prompt = "describe the main events happening in the video and the overall atmosphere."
result = video_text_prompting(video_path, text_prompt)
print(result)
这个例子展示了如何将视频的视觉和音频特征编码到提示中,并指导模型基于视频内容执行任务。
在实际应用中,以下一些技巧可以帮助你更好地使用多模态提示技术:
确保不同模态的信息在语义上是对齐的,这对于模型理解多模态输入至关重要。
def align_modalities(image_features, text_description):
prompt = f"""
Image features: {image_features}
Text description: {text_description}
Ensure that the text description accurately reflects the content of the image.
If there are any discrepancies, provide a corrected description.
Aligned description:
"""
# 使用这个提示调用模型来对齐模态
指导模型关注不同模态中的相关信息。
def cross_modal_attention(image_features, audio_features, text_query):
prompt = f"""
Image features: {image_features}
Audio features: {audio_features}
Query: {text_query}
Focus on the aspects of the image and audio that are most relevant to the query.
Describe what you find:
"""
# 使用这个提示调用模型来实现跨模态注意力
扩展思维链(Chain-of-Thought)技术到多模态场景。
def multimodal_cot(image_features, text_description, question):
prompt = f"""
Image features: {image_features}
Text description: {text_description}
Question: {question}
Let's approach this step-by-step:
1) What are the key elements in the image?
2) How does the text description relate to these elements?
3) What information from both sources is relevant to the question?
4) Based on this analysis, what is the answer to the question?
Step 1:
"""
# 使用这个提示调用模型来实现多模态思维链
评估多模态AI系统的性能比单模态系统更复杂。以下是一些建议:
def multimodal_evaluation(ground_truth, prediction, image_features, audio_features):
# 文本评估(例如使用BLEU分数)
text_score = calculate_bleu(ground_truth, prediction)
# 图像相关性评估
image_relevance = evaluate_image_relevance(image_features, prediction)
# 音频相关性评估
audio_relevance = evaluate_audio_relevance(audio_features, prediction)
# 综合分数
combined_score = (text_score + image_relevance + audio_relevance) / 3
return combined_score
def evaluate_image_relevance(image_features, text):
prompt = f"""
Image features: {image_features}
Generated text: {text}
On a scale of 1-10, how relevant is the generated text to the image content?
Score:
"""
# 使用这个提示调用模型来评估图像相关性
def evaluate_audio_relevance(audio_features, text):
prompt = f"""
Audio features: {audio_features}
Generated text: {text}
On a scale of 1-10, how relevant is the generated text to the audio content?
Score:
"""
# 使用这个提示调用模型来评估音频相关性
让我们通过一个实际的应用案例来综合运用我们学到的多模态提示技术。假设我们正在开发一个多模态新闻分析系统,该系统需要处理包含文本、图像和视频的新闻内容,并生成综合分析报告。
import openai
import cv2
import librosa
import numpy as np
from transformers import pipeline
class MultimodalNewsAnalyzer:
def __init__(self):
self.text_summarizer = pipeline("summarization")
self.image_captioner = pipeline("image-to-text")
def analyze_news(self, text, image_path, video_path):
# 处理文本
text_summary = self.summarize_text(text)
# 处理图像
image_caption = self.caption_image(image_path)
# 处理视频
video_features = self.extract_video_features(video_path)
# 生成综合分析
analysis = self.generate_analysis(text_summary, image_caption, video_features)
return analysis
def summarize_text(self, text):
return self.text_summarizer(text, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
def caption_image(self, image_path):
return self.image_captioner(image_path)[0]['generated_text']
def extract_video_features(self, video_path):
# 简化的视频特征提取
cap = cv2.VideoCapture(video_path)
frames = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
cap.release()
avg_frame = np.mean(frames, axis=0).flatten()[:1000].tolist()
y, sr = librosa.load(video_path)
mel_spectrogram = librosa.feature.melspectrogram(y=y, sr=sr)
audio_features = mel_spectrogram.flatten()[:1000].tolist()
return {"visual": avg_frame, "audio": audio_features}
def generate_analysis(self, text_summary, image_caption, video_features):
prompt = f"""
Analyze the following news content and generate a comprehensive report:
Text Summary: {text_summary}
Image Content: {image_caption}
Video Features:
- Visual: {video_features['visual']}
- Audio: {video_features['audio']}
Please provide a detailed analysis covering the following aspects:
1. Main topic and key points
2. Sentiment and tone
3. Visual elements and their significance
4. Audio elements (if any) and their impact
5. Overall credibility and potential biases
6. Suggestions for further investigation
Analysis:
"""
response = openai.Completion.create(
engine="davinci",
prompt=prompt,
max_tokens=500,
temperature=0.7
)
return response.choices[0].text.strip()
# 使用示例
analyzer = MultimodalNewsAnalyzer()
text = """
Breaking news: A new renewable energy project has been announced today.
The project aims to provide clean energy to over 1 million homes by 2025.
Environmental groups have praised the initiative, while some local communities
express concerns about the impact on wildlife.
"""
image_path = "path/to/solar_panel_image.jpg"
video_path = "path/to/news_report_video.mp4"
analysis = analyzer.analyze_news(text, image_path, video_path)
print(analysis)
这个例子展示了如何创建一个多模态新闻分析系统。让我们分析一下这个实现的关键点:
尽管多模态提示技术极大地扩展了AI应用的范围,但它也面临一些独特的挑战:
挑战:不同模态的信息可能具有不同的特征和尺度,直接融合可能导致某些模态的信息被忽视。
解决方案:
def attention_based_fusion(image_features, text_features, audio_features):
prompt = f"""
Given the following features from different modalities:
Image: {image_features}
Text: {text_features}
Audio: {audio_features}
Please analyze the importance of each modality for the current task,
assigning attention weights (0-1) to each. Then, provide a fused representation
that takes these weights into account.
Attention weights:
Image weight:
Text weight:
Audio weight:
Fused representation:
"""
# 使用这个提示调用模型来实现基于注意力的模态融合
挑战:不同模态的信息可能存在不一致或矛盾,模型需要学会处理这种情况。
解决方案:
def cross_modal_consistency_check(image_description, text_content, audio_transcript):
prompt = f"""
Image description: {image_description}
Text content: {text_content}
Audio transcript: {audio_transcript}
Please analyze the consistency across these modalities:
1. Are there any contradictions between the image, text, and audio?
2. If inconsistencies exist, which modality do you think is more reliable and why?
3. Provide a consistent summary that reconciles any discrepancies.
Analysis:
"""
# 使用这个提示调用模型来检查跨模态一致性
挑战:处理多模态数据通常需要更多的计算资源,可能导致推理时间增加。
解决方案:
def efficient_multimodal_processing(image_features, text_content, audio_features):
prompt = f"""
Given the following multimodal input:
Image features (compressed): {image_features}
Text content: {text_content}
Audio features (compressed): {audio_features}
Please perform the analysis in the following order to maximize efficiency:
1. Quick text analysis
2. If necessary based on text, analyze image features
3. Only if critical information is still missing, analyze audio features
Provide your analysis at each step and explain why you decided to proceed to the next step (if applicable).
Analysis:
"""
# 使用这个提示调用模型来实现高效的多模态处理
随着多模态AI的不断发展,我们可以期待看到以下趋势:
多模态提示技术为我们开启了一个令人兴奋的新领域,使AI能够更全面地理解和处理复杂的真实世界信息。通过本文介绍的技术和最佳实践,你应该能够开始构建强大的多模态AI应用。
然而,多模态AI仍然面临着许多挑战,需要我们不断创新和改进。随着技术的进步,我们期待看到更多令人惊叹的多模态AI应用,这些应用将帮助我们更好地理解和交互with我们的复杂世界。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-05-30
2024-09-12
2024-06-17
2024-08-06
2024-08-30
2024-04-21
2024-06-26
2024-07-07
2024-07-21
2024-06-14
2024-09-26
2024-09-26
2024-09-01
2024-07-15
2024-07-14
2024-07-10
2024-07-02
2024-06-29