微信扫码
与创始人交个朋友
我要投稿
大模型(LLM)相关理论研究与工程实践随着 GPT3 的发布,在学术界、工业界大爆发,备受各行各业关注,并涌现出一些赋能行业、促进生产力、生产关系变革的实践。GPT3 [1] 以及斯坦福计算机学院近 100+ 教授联名论文 [2] 将大模型列为第三轮 AI 浪潮,相对于传统的机器学习与深度学习,以 GPT3 为例的大模型涌现出处理各类任务的新范式:zero-shot、few-shot、in-context 等,同时也支持深度学习领域的 finetune,新范式让大模型能够低成本、快速处理各种任务,极大的缩短了数据准备与工程开发流程。
其中,in-context 作为随着大模型涌现的范式,被大规模的应用到各种知识库问答、资料汇总等领域中,开源社区对 in-context 也非常活跃地响应,推出了 langchain [3]、向量数据库 [4] 等系列优秀框架与技术基座。但是,基于 langchain + 开源大模型在实践过程中也会遇到系列不尽人意的问题,本文将深入剖析 langchain + 开源大模型用于搭建基于公司语料库(iwiki、oncall、码客)上的缺陷,剖析利用开源方案进行实践过程中性能下降的根本原因。
基于 langchain + 大模型 in-context 能力来搭建智能问答系统的常规方案如上图所示,包含 3 个核心模块:数据服务,在线 QA 服务,以及大模型。下面分别详细说明一下各个模块具体做些什么?他们是如何串联在一起完成整个问答任务的?再反过来看看为什么业界基于 openAI 实践很棒,而如果换成基于开源自研后性能下滑很多?
数据对方案的性能影响极其重要,高质量的数据对模型的提升非常显著;但数据处理是一个 caseBycase、包含很多经验与 tricks 的事情,例如文档中的截图、表格、公式、超链接、附件、架构图、流程图、代码片段等等,本文不予以展开分析。
做数据最需要关注的是模型的输入及格式。做知识问答系统本质是自然语言处理的一个任务,因此,数据形态必须是文本,这是最基本的原则,所以如果数据包含非文本类的形态,例如图片(iwiki、码客、oncall 存在大量截图),就需要处理一下,每个人的处理方式和策略不一样,处理得好,最终系统性能会表现好一些。数据服务包含 3 个步骤,格式化(format)、切割(split)、向量化(vectorize)。
为什么以及如何进行预处理与过滤?
参考所选 LLM 在训练/ instruction finetune 处理数据方式(去掉特殊字符、换行空格等)同步处理数据。这么做的原因是 LLM in-context 应该和 训练/instruction finetune 的数据处理方式保持一致,可以保证 in-context 效果达到最佳。所以格式化的第二步,和选用的 LLM 相关。
为什么要进行切割?
看到上述框架图绝大多数人应该有的一个疑问。如果深入思考的话会发现 embedding(text2vec,文本转化为向量)以及 LLM encoder 对输入 tokens 都有限制。embedding 会将一个 text(长字符串)的语义信息压缩成一个向量,这是他的能力,但我们需要重点关注他的局限性,其中之一就是 text 包含的 tokens 有限制,一段话压缩成一个向量是 ok,但一本书压缩成一个向量可能就丢失了绝大多数语义。LLM encoder tokens 的限制在模型结构(利用 next token 进行 pre train)是就定义了,后续也无法更改,而 in-context 本质是把语料注入到 prompt,整个 prompt 不能超过 LLM 的 tokens 限制, 汇总如下公式:
为了确保格式化的语料能够满足上述约束,因此需要切割原始语料。
如何切割?
通常采用固定长度切割(满足上面公式约束下),但固定长度切割容易破坏自然段落的语义,因此需要在上面公式约束与段落语义保留双重约束下,灵活设计方案,切割后的语料片段称为 chunk。
为什么进行向量化?
NLP 领域近 10 年来最朴素最广泛应用的一个技术 embedding 就是将 text 的语义信息转为向量表达,从而基于此向量来处理 NLP 领域中的一系列任务,例如通过向量相似性来衡量两句话语义是否一致等。
向量化的评价指标有哪些?
Huggingface 有一个 embedding 的 benchmark,如链接: https://huggingface.co/spaces/mteb/leaderboard 。
业界通常用 embedding 所得向量长度及其在各 NLP 子任务上的准确率来评估 embedding 模型。原则上:embedding 所得向量长度越长越好,过长的向量也会造成 embedding 模型在训练中越难收敛。分类(Classification)、聚合 (Clustering)、语义相似 (Pair Classification)、排序(Reranking)和召回(Retrieval)等子任务常用来评估 embedding 模型的优劣,准确率越高,embedding 的性能越好。
向量如何存储与检索?
向量的存储与检索是一门特别复杂的课题,涉及向量检索(包含很多相似性度量算法,向量压缩等知识)和向量存储,当前火热的向量数据库方向就是因此而生,在规模不大的情况下用 faiss 做检索够用了,未来有机会将专题就这个点开展分析,这里不予以赘述。
在线 QA 服务是串联大模型与存储向量数据库之间的纽带,大模型不能将数据库所有数据拿去做 in-context,实际上,大模型 in-context 能包含的 chunks 十分有限,在线QA服务核心就是挑选出合适的 chunks 给大模型。在线 QA 服务通过企微、webapi等方式对外提供交互,包含 3 个核心功能模块:用户问题向量化、prompt 组装、筛选 chunks。其中,在线 QA 服务核心在于筛选 chunks,这一步对整体性能至关重要。
同数据服务 chunks 向量化一样,采用同一个 embedding 模型对用户问题进行向量化。
将用户问题,筛选出的 chunks 组装成 prompt,prompt 即为大模型的输入,整个 prompt 不超过大模型输入 tokens 长度的限制,以 openAI gpt-3.5-turbo 为例,输入 tokens 限制为 4096,假设每个 chunks 固定长度为400,不考虑 prompt 不变字符串的长度,gpt-3.5-turbo 最多可以放 10 个 chunks 进行 in-context 学习。
在用户问题与 chunks 经同一 embedding 模型将 text 转为向量:
(M 是 chunks 的总数量),langchain 给的方案是通过计算之间:
的相似度(cos、BM25、knn、欧氏距离等)并倒排来决定哪些 chunks 被召回。本质上前者是 Question,而后者是 Answer,因此 langchain 是利用了 embedding 在召回(Retrieval)任务上的能力来筛选 chunks, 如图 2 红色垂直列所示,这符合问答系统的初衷。非常值得注意的是:embedding 在召回任务上的准确率是其在所有 NLP 任务重最差的一个,QA 任务在语义空间上的表达远不如分类、聚合等任务。常规方案中,langchain 直接召回排序 top8 chunks 给大模型进行 in-context 推理 (gpt-3.5-turbo 4096 tokens)。
问答系统使用了 LLM in-context 的推理能力,将筛选出来的若干个 chunks 传给大模型,让大模型基于这些 chunks 来回答用户问题,有个限制是整个 prompt 的 tokens 长度不要超过 LLM 输入 tokens 限制,不然 GPU 会报 OOM。LLM in-context 的推理能力本质是其在阅读理解,因此,选择问答系统的 LLM 需要重点关注其在阅读理解任务上的性能,好的 LLM 可以非常精准的从一组 chunks 中寻找并总结出用户 query 对应的答案。
将上述各功能模块的逻辑串联一起,从整体的视角观察一下 langchain + 大模型做问答系统整个方案的实践。
LLM 需要上游提供一些语料 chunks,结合 chunks、用户query、自身阅读理解能力完成知识问答。对问答准确率影响最大的因素是 chunks 的质量(是否包含正确答案),LLM 自身阅读理解能力。同时, LLM 输入 token 长度限制导致 prompt 中 chunks 的数量有一定约束,原则上,chunks 数量越多,包含正确答案的概率越大,同时也导致模型的推理速度变慢。
LLM 上游主要目的是召回出候选的 chunks,常规方案使用的是 embedding 处理召回任务的能力,对于一步召回直接注入到 prompt(无精排逻辑),假如传给 LLM prompt k 个 chunks,那么对于召回来说,只需要相似性算法倒序排序前 k 个 chunk 中包含正确答案即可,即关注 embedding 在召回任务中 TopK 的准确率。
综上所属,常规方案中对智能问答系统准确率影响最大的几个因素如下:
1、embedding 在 Retrieval 任务中 TopK 的准确率 (受 embedding 模型自身能力、Retrieval 算法、K等三个因素影响)
2、K 的大小,K 原则越大越好,但是 LLM 的 tokens 限制导致 K 由不能太大。
(上述 1、2 的都是为了从数据库海量 chunks 中选择出包含正确答案的 chunks)
3、LLM 自身阅读理解与总结推理能力。
为什么 langchain + openAI 全家桶准确率特别高,换成开源 LLM 性能下降很多?
使用 openAI 全家桶构建智能问答系统必用两个能力:openAI 的 embedding 与 gpt-3.5-turbo 模型。
图 2 huggingface embedding benchmark 中 openAI 发布的 text-embedding-ada-002 (2021/09 )最大输入 tokens 限制是 8191,输出维度是 1536,在 Retrieval 中 top1 的准确率是 49.25%。这组数据表明 openAI embedding 模型具有非常棒的语义表达能力,能够非常好的将问题、答案映射到相近的语义向量空间中,可以说该 embedding 模型是业界最强的映射 QA 能力的模型。
openAI 的商用模型 gpt-3.5-turbo 输入 tokens 限制为 4096,如果切片每个 chunks 长度为 400,embedding 可以召回近 10 个候选 chunks,即 text-embedding-ada-002 模型 top10 的准确率即可近似为问答系统的整体准确率(做信息流推荐召回排序的同学应该了解,top1 准确率接近50%,top10 的准确率会很惊人),而 gpt-3.5-turbo 自身的阅读理解也高出开源 LLM 一个水平,能够精准的从所有的 chunks 中找到准确答案。
综上: openAI 全家桶中 embedding 在 Retrieval 任务的高性能、gpt-3.5-turbo 的阅读理解能力,输入 tokens 够长等三个重要因素,是常规基于 langchain + openAI 做智能问答系统,用用户问题向量与语料内容向量进行相似性计算并直接召回给 prompt,最终能够取得非常好效果的重要原因。
openAI embedding 与 gpt-3.5-turbo 强劲性能掩盖了一些问题,这些问题在基于开源 LLM 做自研问答系统时被暴露,直接导致开源 LLM 方案性能下降。
openAI 全家桶与开源 LLM 方案的对比如下:
在 Retrieval 任务的语义关联映射上,openAI 的 embedding 模型能力远高于开源 LLM(15 个百分点以上);LLM token 的限制,导致采用 openAI 召回的 chunks 数量比开源 LLM 多一倍;同时在阅读理解能力上,gpt-3.5-turbo 能够非常好的从一系列 chunks 中找到并总结出最佳答案,而开源 LLM 在这方面能力稍微逊色一些。综上,选择目前开源最好的组合方案:llama 的 vicuna13B 与中文领域开源最好的 embedding 模型 GanymedeNil/text2vec-large-chinese · Hugging Face,采用常规的 langchain + openAI 技术框架,性能会下降很多。
通过全文分析,总结出开源 LLM 大模型在 openAI + langchain 通用的技术方案下,性能不佳的原因主要如下:
洞悉问题是进步的第一步,本文重点从 embedding 与 LLM 两个角度来剖析 langchain + 开源大模型搭建智能问答系统性能下降的原因,下篇也将从这两个角度逐步分析如何基于 lanchain + 开源大模型搭建高性能智能问答系统。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-01-06
Gitee AI加dify整合微信实现文生图案例分享
2025-01-06
蚂蚁开源新RAG框架KAG,可达91%准确率
2025-01-06
突破算力限制!Meta开源“记忆层”,重塑Transformer架构大模型
2025-01-04
跟GPT4o、o1拜拜,Gemini2.0取代了我的AI应用们
2025-01-04
微软研究人员发布 AIOpsLab:面向 AIOps 代理的开源综合人工智能框架
2025-01-03
显卡可能没那么重要了?中国公司给硅谷好好上了一课。
2025-01-02
Docling:开源免费,多格式文档解析神器,13.4k stars 见证卓越实力!
2025-01-02
我与vLLM的2024
2024-07-25
2024-05-06
2024-08-13
2024-06-12
2024-07-11
2024-07-20
2024-06-16
2024-09-20
2024-06-15
2024-06-06
2024-12-24
2024-12-20
2024-12-19
2024-11-22
2024-11-19
2024-11-13
2024-11-13
2024-10-07