AI知识库

53AI知识库

学习大模型的前沿技术与行业应用场景


多图理解,更懂中文,支持function call的Phi-3.5来了!
发布日期:2024-09-16 19:04:43 浏览次数: 1945 来源:魔搭ModelScope社区


01

引言


微软继今年4月推出Phi-3系列小型语言模型后,又一鼓作气三连发布并开源其「小而美」系列 Phi-3.5模型!


本次发布的三个模型各有特色:


Mini型:Phi-3.5-mini-instruct(3.8B)

Phi-3.5 mini 具有 38 亿个参数,基于Phi-3 的数据集(合成数据和经过筛选的公开网站)构建,重点关注高质量、推理密集的数据。该模型属于 Phi-3 模型系列,支持 128K 令牌上下文长度。该模型经过了严格的增强过程,结合了监督微调、近端策略优化和直接偏好优化,以确保精确遵守指令和强大的安全措施。Phi-3.5 mini 在中文场景有所增强,但是受限于模型的大小,依然会有较多的事实错误,通过RAG的方式可以有效降低错误。


MoE型:Phi-3.5-MoE-instruct  (16x3.8B)

Phi-3.5-MoE-instruct是一个MoE模型,有 16x3.8B 个参数,使用 2 位专家时有 6.6B 个活动参数。该模型使用词汇量为 32,064 的标记器。Phi-3.5-MoE-instruct在推理能力上大大增强(尤其是数学和逻辑),也非常适用于function call的场景。


多模态:Phi-3.5-vision-instruct (4.2B)

Phi-3.5-vision-instruct 多模态版本可支持 128K 上下文长度(以 token 为单位)有 4.2B 参数,主要包含图像编码器和 Phi-3 Mini 语言模型。本次Phi-3.5-vision-instruct 支持多图理解,在如下场景上有较好的效果:

  • 一般图像理解;

  • 光学字符识别 (OCR)

  • 图表和表格理解;

  • 多幅图像比较;

  • 多图像或视频片段摘要


同时魔搭社区已经上线Phi-3.5-mini-instruct-GGUF,可更加方便的使用ollama,llama.cpp,lmstudio等工具运行。


模型链接:

Phi-3.5-mini-instruct:

https://modelscope.cn/models/LLM-Research/Phi-3.5-mini-instruct


Phi-3.5-MoE-instruct:

https://modelscope.cn/models/LLM-Research/Phi-3.5-MoE-instruct


Phi-3.5-vision-instruct :

https://modelscope.cn/models/LLM-Research/Phi-3.5-vision-instruct


Phi-3.5-mini-instruct-GGUF:

https://modelscope.cn/models/LLM-Research/Phi-3.5-mini-instruct-GGUF


cookbook链接:

https://github.com/microsoft/Phi-3CookBook


02

模型推理


Phi-3.5-mini-instruct

小模型Phi-3.5-mini-instruct在中文能力上有更好的支持。

import torchfrom modelscope import AutoModelForCausalLM, AutoTokenizerfrom transformers import pipeline
torch.random.manual_seed(0)
model = AutoModelForCausalLM.from_pretrained( "LLM-Research/Phi-3.5-mini-instruct", device_map="cuda", torch_dtype="auto", trust_remote_code=True, )tokenizer = AutoTokenizer.from_pretrained("LLM-Research/Phi-3.5-mini-instruct")
messages = "<|system|>\n 你是我的人工智能助手,协助我用中文解答问题.\n<|end|><|user|>\n 你知道长沙吗?? \n<|end|><|assistant|>"
pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer,)
generation_args = { "max_new_tokens": 500, "return_full_text": False, "temperature": 0.0, "do_sample": False,}
output = pipe(messages, **generation_args)print(output[0]['generated_text'])


Phi-3.5-vision-instruct

多模态模型Phi-3.5-vision-instruct支持了多图理解

from PIL import Image import requests from transformers import AutoModelForCausalLM from transformers import AutoProcessor from modelscope import snapshot_download
model_id = snapshot_download("LLM-Research/Phi-3.5-vision-instruct")
# Note: set _attn_implementation='eager' if you don't have flash_attn installedmodel = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto", _attn_implementation='flash_attention_2' )
# for best performance, use num_crops=4 for multi-frame, num_crops=16 for single-frame.processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=4)
images = []placeholder = ""
# Note: if OOM, you might consider reduce number of frames in this example.for i in range(1,20): url = f"https://modelscope.oss-cn-beijing.aliyuncs.com/resource/Introduction-to-Microsoft-Azure-Cloud-{i}-2048.webp" images.append(Image.open(requests.get(url, stream=True).raw)) placeholder += f"<|image_{i}|>\n"
messages = [ {"role": "user", "content": placeholder+"Summarize the deck of slides."},]
prompt = processor.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True)
inputs = processor(prompt, images, return_tensors="pt").to("cuda:0")
generation_args = { "max_new_tokens": 1000, "temperature": 0.0, "do_sample": False, }
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
# remove input tokens generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(response)


Phi-3.5-MoE-instruct

Phi-3.5-MoE-instruct模型推理能力更强,本文演示的为agent场景

import torchfrom transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from modelscope import snapshot_downloadmodel_dir = snapshot_download("LLM-Research/Phi-3.5-MoE-instruct")torch.random.manual_seed(0) 
model = AutoModelForCausalLM.from_pretrained( model_dir, device_map="cuda", torch_dtype="auto", trust_remote_code=True, )
tokenizer = AutoTokenizer.from_pretrained(model_dir)

pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, )
generation_args = { "max_new_tokens": 500, "return_full_text": False, "temperature": 0.0, "do_sample": False, }


设置system message

sys_msg = """You are a helpful AI assistant, you are an agent capable of using a variety of tools to answer a question. Here are a few of the tools available to you:
- Blog: This tool helps you describe a certain knowledge point and content, and finally write it into Twitter or Facebook style content- Translate: This is a tool that helps you translate into any language, using plain language as required
To use these tools you must always respond in JSON format containing `"tool_name"` and `"input"` key-value pairs. For example, to answer the question, "Build Muliti Agents with MOE models" you must use the calculator tool like so:
```json
{ "tool_name": "Blog", "input": "Build Muliti Agents with MOE models"}
```
Or to translate the question "can you introduce yourself in Chinese" you must respond:
```json
{ "tool_name": "Search", "input": "can you introduce yourself in Chinese"}
```
Remember just output the final result, ouput in JSON format containing `"agentid"`,`"tool_name"` , `"input"` and `"output"` key-value pairs .:
```json
[

{ "agentid": "step1", "tool_name": "Blog", "input": "Build Muliti Agents with MOE models", "output": "........."},
{ "agentid": "step2", "tool_name": "Search", "input": "can you introduce yourself in Chinese", "output": "........."},{ "agentid": "final" "tool_name": "Result, "output": "........."}]
```
The users answer is as follows."""
def instruction_format(sys_message: str, query: str):    # note, don't "</s>" to the end    return f'<|system|> {sys_message} <|end|>\n<|user|> {query} <|end|>\n<|assistant|>'
query ='Write something about Generative AI with MOE , translate it to Chinese'input_prompt = instruction_format(sys_msg, query)
import os
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True "output = pipe(input_prompt, **generation_args)output[0]['generated_text']


显存占用:



Phi-3.5-mini-instruct-GGUF

使用Ollama本地运行Phi-3.5-mini-instruct-GGUF


Linux环境使用

下载GGUF模型:

modelscope download --model=LLM-Research/Phi-3.5-mini-instruct-GGUF --local_dir . Phi-3.5-mini-instruct-Q5_K_M.gguf

Liunx用户可使用魔搭镜像环境安装【推荐】

modelscope download --model=modelscope/ollama-linux --local_dir ./ollama-linuxcd ollama-linuxsudo chmod 777 ./ollama-modelscope-install.sh./ollama-modelscope-install.sh


启动Ollama服务

ollama serve


创建ModelFile

复制模型路径,创建名为“ModelFile”的meta文件,内容如下:

FROM /mnt/workspace/Phi-3.5-mini-instruct-Q5_K_M.ggufTEMPLATE """{{ if .System }}<|system|>
{{ .System }}<|end|>
{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}<|end|>
{{ end }}<|assistant|>
{{ .Response }}<|end|>"""


创建自定义模型

使用ollama create命令创建自定义模型

ollama create myphi3_5 --file ./Modelfile


运行模型

ollama run myphi3_5


显存占用:


03

模型微调


我们使用ms-swift对LLM: Phi-3.5-mini-instruct, VLM: Phi-3.5-vision-instruct进行微调。swift是魔搭社区官方提供的大模型与多模态大模型微调推理框架。


ms-swift开源地址:https://github.com/modelscope/ms-swift


环境准备

git clone https://github.com/modelscope/swift.gitcd swiftpip install -e .[llm]
# 可选, 对phi3_5-mini-instruct进行推理加速.pip install vllm


LLM微调

这里我们使用alpaca-zh, alpaca-en作为示例数据集,展示可运行的demo。

您可以在modelscope上这两个数据集:

  • alpaca-zh:

    https://modelscope.cn/datasets/AI-ModelScope/alpaca-gpt4-data-zh

  • alpaca-en:

    https://modelscope.cn/datasets/AI-ModelScope/alpaca-gpt4-data-en


自定义数据集参考:https://swift.readthedocs.io/zh-cn/latest/LLM/%E8%87%AA%E5%AE%9A%E4%B9%89%E4%B8%8E%E6%8B%93%E5%B1%95.html


微调脚本:

# 显存占用: 4 * 11GB# 以下脚本分别采样alpaca-zh, alpaca-en数据集20000条# 更多超参数含义可以查看文档CUDA_VISIBLE_DEVICES=0,1,2,3 NPROC_PER_NODE=4 swift sft \  --model_type phi3_5-mini-instruct \  --model_id_or_path LLM-Research/Phi-3.5-mini-instruct \  --sft_type lora \  --learning_rate 1e-4 \  --output_dir output \  --dataset alpaca-zh#20000 alpaca-en#20000 \  --lora_target_modules ALL \  --deepspeed default-zero2


微调后推理脚本:

# 推理CUDA_VISIBLE_DEVICES=0 swift infer \    --ckpt_dir output/phi3_5-mini-instruct/vx-xxx/checkpoint-xxx \    --load_dataset_config true

# merge-lora 并使用vllm进行加速CUDA_VISIBLE_DEVICES=0 swift infer \ --ckpt_dir output/phi3_5-mini-instruct/vx-xxx/checkpoint-xxx \ --load_dataset_config true --merge_lora true \ --infer_backend vllm


VLM微调

这里我们使用coco-en-mini作为示例数据集,该数据集的任务是对图片内容进行描述,展示可运行的demo。


您可以在 modelscope上找到该数据集:https://modelscope.cn/datasets/modelscope/coco_2014_caption/summary


自定义数据集格式如下(单图、多图和无图):

{"query": "<image>55555", "response": "66666", "images": ["image_path"]}{"query": "eeeee<image>eeeee<image>eeeee", "response": "fffff", "history": [], "images": ["image_path1", "image_path2"]}{"query": "EEEEE", "response": "FFFFF", "history": [["query1", "response2"], ["query2", "response2"]], "images": []}


微调脚本:

# 显存占用: 4 * 12GB# 默认会将lora_target_modules设置为llm和projector所有的linearCUDA_VISIBLE_DEVICES=0,1,2,3 NPROC_PER_NODE=4 swift sft \  --model_type phi3_5-vision-instruct \  --model_id_or_path LLM-Research/Phi-3.5-vision-instruct \  --sft_type lora \  --dataset coco-en-mini#20000 \  --deepspeed default-zero2


如果要使用自定义数据集,只需按以下方式进行指定:

  --dataset train.jsonl \  --val_dataset val.jsonl \


显存占用:



训练loss图(时间原因,只训练了450个step):


微调后推理脚本如下:

# 推理CUDA_VISIBLE_DEVICES=0 swift infer \    --ckpt_dir output/phi3_5-vision-instruct/vx-xxx/checkpoint-xxx \    --load_dataset_config true
# merge-lora并推理CUDA_VISIBLE_DEVICES=0 swift infer \ --ckpt_dir output/phi3_5-vision-instruct/vx-xxx/checkpoint-xxx \ --load_dataset_config true --merge_lora true \ --safe_serialization false

微调后模型对验证集进行推理的示例:



点击阅读原文,跳转Phi-3.5模型合集页~





来见面吧!

9.19-9.21,魔搭社区邀你相聚云栖小镇

逛展,聊天,交个朋友

即日起 免费领票,数量有限噢 ?



(通过本渠道注册,可凭报名记录前往魔搭展区领取限定周边礼品一份)




?点击关注ModelScope公众号获取
更多技术信息~



53AI,企业落地应用大模型首选服务商

产品:大模型应用平台+智能体定制开发+落地咨询服务

承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业

联系我们

售前咨询
186 6662 7370
预约演示
185 8882 0121

微信扫码

与创始人交个朋友

回到顶部

 
扫码咨询