AI知识库

53AI知识库

学习大模型的前沿技术与行业应用场景


私人大模型知识库来了,开源免费!
发布日期:2024-10-22 21:25:15 浏览次数: 1863 来源:算法进阶


你是否也有这样的桌面?为了方便找材料,全部放到了桌面,最后结果就是“用起一时爽,找起火葬场”

你是否也是盘即个人电脑磁使再怎么不够用,也舍不得删除几年前做的运维方案、架构方案、设计方案文档?最后即使文档都保存了,存云盘了,到用的时候依旧发现找不到,找的也不是想要的。


你需要的是通过大模型管理你的文件/信息库!


|大模型知识库is all you need

现在不用再担心了找不到材料文档了,GitHub开源了一款可离线,支持检索增强生成(RAG)大模型的知识库项目。虽然开源时间不长,但是势头很猛,已经斩获25K Star。具备以下特点:

  • 项目利用 langchain 思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案;

  • 项目支持的开源 LLM 与 Embedding 模型,本项目可实现全部使用开源模型离线私有部署。与此同时,本项目也支持 OpenAI GPT API 的调用,并将在后续持续扩充对各类模型及模型 API 的接入;

  • 项目方案采用Apache License,可以免费商用,无需付费。

总结下重点就是:

  • 支持中文,可私有化部署,免费商用!

  • 支持中文,可私有化部署,免费商用!

  • 支持中文,可私有化部署,免费商用!

重要的事情说三遍


项目名称:Langchain-Chatchat项目地址:https://github.com/chatchat-space/Langchain-Chatchat


原理介绍视频(点击可看视频)

从文档处理角度来看,实现流程如下:


技术路线Langchain 应用 基础React形式的Agent实现,包括调用计算器等 Langchain 自带的Agent实现和调用 智能调用不同的数据库和联网知识 本地数据接入 搜索引擎接入 Agent 实现 LLM 模型接入 支持通过调用 FastChat api 调用 llm 支持 ChatGLM API 等 LLM API 的接入 支持 Langchain 框架支持的LLM API 接入 Embedding 模型接入 支持调用 HuggingFace 中各开源 Emebdding 模型 支持 OpenAI Embedding API 等 Embedding API 的接入 支持 智谱AI、百度千帆、千问、MiniMax 等在线 Embedding API 的接入 基于 FastAPI 的 API 方式调用 Web UI 基于 Streamlit 的 Web UI


|大模型知识库来袭 3种部署方式

 Docker 部署 

一行代码搞定,但是建议网速不好的同学不要尝试

docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.7


 常规模式本地部署方案 

1. 环境配置


# 首先,确信你的机器安装了 Python 3.8 - 3.10 版本$ python --versionPython 3.8.13
# 如果低于这个版本,可使用conda安装环境$ conda create -p /your_path/env_name python=3.8
# 激活环境$ source activate /your_path/env_name
# 或,conda安装,不指定路径, 注意以下,都将/your_path/env_name替换为env_name$ conda create -n env_name python=3.8$ conda activate env_name # Activate the environment
# 更新py库$ pip3 install --upgrade pip
# 关闭环境$ source deactivate /your_path/env_name
# 删除环境$ conda env remove -p/your_path/env_name


接着,开始安装项目的依赖


# 拉取仓库$ git clone --recursive https://github.com/chatchat-space/Langchain-Chatchat.git
# 进入目录$ cd Langchain-Chatchat
# 安装全部依赖$ pip install -r requirements.txt
# 默认依赖包括基本运行环境(FAISS向量库)。以下是可选依赖:- 如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。- 如果要开启 OCR GPU 加速,请安装 rapidocr_paddle[gpu]- 如果要使用在线 API 模型,请安装对用的 SDK


此外,为方便用户 API 与 webui 分离运行,可单独根据运行需求安装依赖包。

  • 如果只需运行 API,可执行:


$ pip install -r requirements_api.txt
# 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。


  • 如果只需运行 WebUI,可执行:


$ pip install -r requirements_webui.txt


2. 模型下载

如需在本地或离线环境下运行本项目,需要首先将项目所需的模型下载至本地,通常开源 LLM 与 Embedding 模型可以从 HuggingFace 下载。

以本项目中默认使用的 LLM 模型 THUDM/ChatGLM3-6B 与 Embedding 模型 BAAI/bge-large-zh 为例:

下载模型需要先安装 Git LFS ,然后运行


$ git lfs install$ git clone https://huggingface.co/THUDM/chatglm3-6b$ git clone https://huggingface.co/BAAI/bge-large-zh


3. 初始化知识库和配置文件


按照下列方式初始化自己的知识库和简单的复制配置文件


$ python copy_config_example.py$ python init_database.py --recreate-vs


4. 一键启动

按照以下命令启动项目


$ python startup.py -a


 最轻模式本地部署方案 

该模式的配置方式与常规模式相同,但无需安装 torch 等重依赖,通过在线API实现 LLM 和 Ebeddings 相关功能,适合没有显卡的电脑使用。


$ pip install -r requirements_lite.txt$ python startup.py -a --lite



 Demo示例 

  • Web UI 对话界面:

  • Web UI 知识库管理页面:


53AI,企业落地应用大模型首选服务商

产品:大模型应用平台+智能体定制开发+落地咨询服务

承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业

联系我们

售前咨询
186 6662 7370
预约演示
185 8882 0121

微信扫码

与创始人交个朋友

回到顶部

 
扫码咨询