微信扫码
添加专属顾问
我要投稿
Transformers以其卓越的文本处理和生成能力,引领了自然语言处理(NLP)的革命。这种架构通过自注意力机制来捕捉序列间的依赖关系,使其在翻译、摘要和文本生成等任务上表现尤为出色。尽管如此,Transformers在某些方面仍存在局限:
内存限制:Transformers的上下文窗口通常固定在512至2048个token之间,这限制了它们直接利用大型外部知识库的能力。
静态知识库:Transformers在训练完成后,无法在不重新训练的情况下动态更新其知识库。
资源密集型:训练大型语言模型需要消耗大量的计算资源,这使得对于许多用户来说,频繁定制模型变得不太现实。
RAG通过融合检索系统和生成模型的长处,有效克服了上述限制。Facebook AI研发的RAG技术通过外部检索机制,从庞大的语料库中提取相关信息,进而丰富生成过程。这种策略赋予了语言模型访问和利用超出其固定上下文窗口之外的海量信息的能力,使得它们能够提供更加精准、更具上下文相关性的回答。
RAG是如何工作的?
RAG 分为两个主要阶段:检索和生成。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-01-08
都有混合检索与智能路由了,谁还在给RAG赛博哭坟?
2026-01-06
当 Claude Code 连接 NotebookLM,个人 AI 终于有了“长期记忆”
2026-01-06
AI 总 “胡说八道”?分类法 + 本体论,让 AI 决策透明可追溯
2026-01-05
MegaRAG :用“多模态知识图谱”打破 RAG 的“次元壁”
2026-01-03
打造你的企业级智能文档问答系统——Everything plus RAG 实战指南
2026-01-02
LEANN:200GB 压到 6GB,笔记本跑 RAG 不是梦
2026-01-02
如何用NotebookLM,把枯燥的财报解读成精美的PPT?
2026-01-01
这次,RAG记忆被微信AI团队的超图盘活了
2025-10-11
2025-10-12
2025-12-04
2025-11-04
2025-10-31
2025-12-03
2025-11-13
2025-10-12
2025-10-16
2025-10-16
2026-01-08
2026-01-02
2025-12-23
2025-12-21
2025-12-10
2025-11-23
2025-11-20
2025-11-19