微信扫码
与创始人交个朋友
我要投稿
在数字化时代,人工智能(AI)的每一次技术革新都可能引领行业的变革。CRAG(Chain of Thought Retrieval-Augmented Generation)技术,作为AI领域的新星,以其独特的检索增强型能力,为自然语言处理(NLP)带来了前所未有的深度和精准度。
正确
,错误
和模糊
。分别处理每种类型的信息。然后,根据这些处理过的信息,进行编译和总结。在考试试卷上写下我们的答复。这就是CRAG所做的。正确
**,这意味着检索到的文档包含了查询所需的必要内容,然后使用知识提炼算法重写检索到的文档。错误
**的,这意味着查询和检索到的文档是不相关的。因此,我们不能将文档发送给LLM。在CRAG中,使用网页搜索引擎检索外部知识。模糊
**的情况,这意味着检索到的文档可能接近但不足以提供答案。在这种情况下,需要通过网页搜索获取额外的信息。因此,既使用知识提炼算法也使用搜索引擎。下面我们通过LangGraph来实现CRAG检索增强
有状态的图:主要类型的图。它旨在在通过节点处理数据时管理和更新状态对象。
流程图如下:
! pip install langchain_community tiktoken langchain-openai langchainhub chromadb langchain langgraph tavily-python
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-12-23
一文详谈20多种RAG优化方法
2024-12-23
深入RAG工作流:检索生成的最佳实践
2024-12-23
o1 pro “碾压式”洞察:世界顶尖免疫学专家被机器深度分析“惊醒”
2024-12-23
使用 Lang Chain 和 Lang Graph 构建多代理 RAG :分步指南 + Gemma 2
2024-12-23
RAG评估框架:RAG Triad框架及其实战
2024-12-22
2个简单技巧把 RAG 检索准确率从 50% 提高到 95 %
2024-12-22
Browser-Use + LightRAG Agent:可使用 LLM 抓取 99% 的网站
2024-12-22
Dynamic RAG实战:解决知识增强中的动态更新挑战
2024-07-18
2024-05-05
2024-06-20
2024-09-04
2024-05-19
2024-07-09
2024-07-09
2024-07-07
2024-07-07
2024-06-13
2024-12-21
2024-12-14
2024-12-01
2024-11-27
2024-11-25
2024-11-06
2024-11-06
2024-11-05