微信扫码
添加专属顾问
我要投稿
在人工智能的迅猛发展浪潮中,语言模型的进化从未停歇。随着技术的不断突破,RAG(检索增强生成)技术以其独特的优势,正引领着一场关于知识获取和生成内容的革命。
随着ReST(检索到序列转换)技术的崛起,一个新的竞争者进入了人们的视野。这不仅是技术的较量,更是对未来智能对话系统发展方向的探索。
在这个充满变革的时代,我们不禁要问:RAG和ReST,这两种先进技术将如何塑造大型语言模型的未来?
它们在提升模型性能、增强知识获取能力以及优化生成内容方面,各自又有哪些独特的优势和挑战?
本文将深入探讨RAG到ReST的技术演进,揭示它们在大型语言模型开发中的应用和影响,同时探讨它们在实际应用中可能引发的争议和挑战。
@鲁班AI lab 梳理了下相关讯息,以供参考。
追逐AI的浪潮!文末附学习资料,赶快收藏,并分享给你的好友哦
Part 1
图片来源于网络
Part 2
Part 3
图片来源于网络
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-26
深度学习!构建基于LangGraph的RAG多智能体研究工具。
2025-04-26
用RAG与Agent提升企业问答效率:我的AI实践之路
2025-04-26
理解 RAG 第一部分:为什么需要它
2025-04-26
理解 RAG 第三部分:融合检索与重新排序
2025-04-26
理解 RAG 第四部分:检索增强生成评估框架
2025-04-26
理解 RAG 第五部分:管理上下文长度
2025-04-26
RAG比之MCP或长上下文LLM,要没落了吗?
2025-04-26
【Ragflow】21.RagflowPlus(v0.2.1):6个bug修复/增加重置密码功能
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-04-26
2025-04-25
2025-04-22
2025-04-22
2025-04-20
2025-04-19
2025-04-18
2025-04-16