AI知识库

53AI知识库

学习大模型的前沿技术与行业应用场景


GraphRAG + Ollama 本地部署全攻略:避坑实战指南
发布日期:2024-08-12 07:47:50 浏览次数: 2759 来源:玄姐聊AGI



为什么要对 GraphRAG 本地部署?

微软开源 GraphRAG 后,热度越来越高,目前 GraphRAG 只支持 OpenAI 的闭源大模型,导致部署后使用范围大大受限,本文通过 GraphRAG 源码的修改,来支持更广泛的 Embedding 模型和开源大模型,从而使得 GraphRAG 的更容易上手使用。

如果对 GrapRAG 还不太熟悉的同学,可以看我之前写的两篇文章 《微软重磅开源 GraphRAG:新一代 RAG 技术来了!》 和《GraphRAG 项目升级!现已支持 Ollama 本地模型接入,打造交互式 UI 体验


 2

GraphRAG 一键安装

第一步、安装 GraphRAG

需要 Python 3.10-3.12 环境。

第二步、创建知识数据文件夹

安装完整后,需要创建一个文件夹,用来存储你的知识数据,目前 GraphRAG 只支持 txt 和 csv 格式。

第三步、准备一份数据放在 /ragtest/input 目录下

第四步、初始化工作区

首先,我们需要运行以下命令来初始化。

其次,我们第二步已经准备了 ragtest 目录,运行以下命令完成初始化。

运行完成后,在 ragtest 目录下生成以下两个文件:.env 和settings.yaml。ragtest 目录下的结构如下:

.env 文件包含了运行 GraphRAG 管道所需的环境变量。如果您检查该文件,您会看到一个定义的环境变量,GRAPHRAG_API_KEY=<API_KEY>。这是 OpenAI API 或 Azure OpenAI 端点的 API 密钥。您可以用自己的 API 密钥替换它。
settings.yaml 文件包含了管道的设置。您可以修改此文件以更改管道的设置。


 3

修改配置文件支持本地部署大模型

第一步、确保已安装 Ollama 
如果你还没安装或者不会安装,可以参考我之前写的文章《Spring AI + Ollama 快速构建大模型应用程序(含源码)》。
第二步、确保已安装以下本地模型
Embedding 嵌入模型quentinz/bge-large-zh-v1.5:latestLLM 大模型gemma2:9b
第三步、修改 settings.yaml 以支持以上两个本地模型,以下是修改后的文件
encoding_model: cl100k_baseskip_workflows: []llm:api_key: ollamatype: openai_chat # or azure_openai_chatmodel: gemma2:9b # 你 ollama 中的本地 llm 模型,可以换成其他的,只要你安装了就可以model_supports_json: true # recommended if this is available for your model.max_tokens: 2048  api_base: http://localhost:11434/v1 # 接口注意是v1concurrent_requests: 1 # the number of parallel inflight requests that may be made
parallelization:stagger: 0.3
async_mode: threaded # or asyncio
embeddings:async_mode: threaded # or asynciollm:api_key: ollamatype: openai_embedding # or azure_openai_embedding    model: quentinz/bge-large-zh-v1.5:latest # 你 ollama 中的本地 Embeding 模型,可以换成其他的,只要你安装了就可以    api_base: http://localhost:11434/api # 注意是 api    concurrent_requests: 1 # the number of parallel inflight requests that may be madechunks:size: 300overlap: 100group_by_columns: [id] # by default, we don't allow chunks to cross documentsinput:type: file # or blobfile_type: text # or csvbase_dir: "input"file_encoding: utf-8file_pattern: ".*\\.txt$"
cache:type: file # or blob  base_dir: "cache"
storage:type: file # or blob  base_dir: "output/${timestamp}/artifacts"
reporting:type: file # or console, blob  base_dir: "output/${timestamp}/reports"
entity_extraction:prompt: "prompts/entity_extraction.txt"entity_types: [organization,person,geo,event]max_gleanings: 0
summarize_descriptions:prompt: "prompts/summarize_descriptions.txt"max_length: 500
claim_extraction:prompt: "prompts/claim_extraction.txt"description: "Any claims or facts that could be relevant to information discovery."max_gleanings: 0
community_report:prompt: "prompts/community_report.txt"max_length: 2000max_input_length: 8000
cluster_graph:max_cluster_size: 10
embed_graph:  enabled: false # if true, will generate node2vec embeddings for nodes
umap:enabled: false # if true, will generate UMAP embeddings for nodes
snapshots:graphml: falseraw_entities: falsetop_level_nodes: false
local_search:max_tokens: 5000
global_search:  max_tokens: 5000

第四步、运行 GraphRAG 构建知识图谱索引

构建知识图谱的索引需要一定的时间,构建过程如下所示:

 4

修改源码支持本地部署大模型

接下来修改源码,保证进行 local 和 global 查询时给出正确的结果。

第一步、修改成本地的 Embedding 模型

修改源代码的目录和文件:

.../Python/Python310/site-packages/graphrag/llm/openai/openai_embeddings_llm.py"

修改后的源码如下:


# Copyright (c) 2024 Microsoft Corporation.# Licensed under the MIT License
"""The EmbeddingsLLM class."""
from typing_extensions import Unpack
from graphrag.llm.base import BaseLLMfrom graphrag.llm.types import (EmbeddingInput,EmbeddingOutput,LLMInput,)
from .openai_configuration import OpenAIConfigurationfrom .types import OpenAIClientTypesimport ollama

class OpenAIEmbeddingsLLM(BaseLLM[EmbeddingInput, EmbeddingOutput]):"""A text-embedding generator LLM."""
_client: OpenAIClientTypes_configuration: OpenAIConfiguration
def __init__(self, client: OpenAIClientTypes, configuration: OpenAIConfiguration):self.client = clientself.configuration = configuration
async def _execute_llm(self, input: EmbeddingInput, **kwargs: Unpack[LLMInput]) -> EmbeddingOutput | None:args = {"model": self.configuration.model,**(kwargs.get("model_parameters") or {}),}embedding_list = []for inp in input:embedding = ollama.embeddings(model="quentinz/bge-large-zh-v1.5:latest",prompt=inp)embedding_list.append(embedding["embedding"])return embedding_list# embedding = await self.client.embeddings.create(# input=input,# **args,# )# return [d.embedding for d in embedding.data]

第二步、继续修改 Embedding 模型

修改源代码的目录和文件:

.../Python/Python310/site-packages/graphrag/query/llm/oai/embedding.py"

修改后的源码如下:


# Copyright (c) 2024 Microsoft Corporation.# Licensed under the MIT License
"""OpenAI Embedding model implementation."""
import asynciofrom collections.abc import Callablefrom typing import Any
import numpy as npimport tiktokenfrom tenacity import (AsyncRetrying,RetryError,Retrying,retry_if_exception_type,stop_after_attempt,wait_exponential_jitter,)
from graphrag.query.llm.base import BaseTextEmbeddingfrom graphrag.query.llm.oai.base import OpenAILLMImplfrom graphrag.query.llm.oai.typing import (OPENAI_RETRY_ERROR_TYPES,OpenaiApiType,)from graphrag.query.llm.text_utils import chunk_textfrom graphrag.query.progress import StatusReporter
from langchain_community.embeddings import OllamaEmbeddings


class OpenAIEmbedding(BaseTextEmbedding, OpenAILLMImpl):"""Wrapper for OpenAI Embedding models."""
def __init__(self,api_key: str | None = None,azure_ad_token_provider: Callable | None = None,model: str = "text-embedding-3-small",deployment_name: str | None = None,api_base: str | None = None,api_version: str | None = None,api_type: OpenaiApiType = OpenaiApiType.OpenAI,organization: str | None = None,encoding_name: str = "cl100k_base",max_tokens: int = 8191,max_retries: int = 10,request_timeout: float = 180.0,retry_error_types: tuple[type[BaseException]] = OPENAI_RETRY_ERROR_TYPES,# type: ignorereporter: StatusReporter | None = None,):OpenAILLMImpl.__init__(self=self,api_key=api_key,azure_ad_token_provider=azure_ad_token_provider,deployment_name=deployment_name,api_base=api_base,api_version=api_version,api_type=api_type,# type: ignoreorganization=organization,max_retries=max_retries,request_timeout=request_timeout,reporter=reporter,)
self.model = modelself.encoding_name = encoding_nameself.max_tokens = max_tokensself.token_encoder = tiktoken.get_encoding(self.encoding_name)self.retry_error_types = retry_error_types
def embed(self, text: str, **kwargs: Any) -> list[float]:"""Embed text using OpenAI Embedding's sync function.
For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average.Please refer to: https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb"""token_chunks = chunk_text(text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens)chunk_embeddings = []chunk_lens = []for chunk in token_chunks:try:embedding, chunk_len = self._embed_with_retry(chunk, **kwargs)chunk_embeddings.append(embedding)chunk_lens.append(chunk_len)# TODO: catch a more specific exceptionexcept Exception as e:# noqa BLE001self._reporter.error(message="Error embedding chunk",details={self.__class__.__name__: str(e)},)
continuechunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)return chunk_embeddings.tolist()
async def aembed(self, text: str, **kwargs: Any) -> list[float]:"""Embed text using OpenAI Embedding's async function.
For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average."""token_chunks = chunk_text(text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens)chunk_embeddings = []chunk_lens = []embedding_results = await asyncio.gather(*[self._aembed_with_retry(chunk, **kwargs) for chunk in token_chunks])embedding_results = [result for result in embedding_results if result[0]]chunk_embeddings = [result[0] for result in embedding_results]chunk_lens = [result[1] for result in embedding_results]chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)# type: ignorechunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)return chunk_embeddings.tolist()
def _embed_with_retry(self, text: str | tuple, **kwargs: Any) -> tuple[list[float], int]:try:retryer = Retrying(stop=stop_after_attempt(self.max_retries),wait=wait_exponential_jitter(max=10),reraise=True,retry=retry_if_exception_type(self.retry_error_types),)for attempt in retryer:with attempt:embedding = (OllamaEmbeddings(model=self.model,).embed_query(text)or [])return (embedding, len(text))except RetryError as e:self._reporter.error(message="Error at embed_with_retry()",details={self.__class__.__name__: str(e)},)return ([], 0)else:# TODO: why not just throw in this case?return ([], 0)
async def _aembed_with_retry(self, text: str | tuple, **kwargs: Any) -> tuple[list[float], int]:try:retryer = AsyncRetrying(stop=stop_after_attempt(self.max_retries),wait=wait_exponential_jitter(max=10),reraise=True,retry=retry_if_exception_type(self.retry_error_types),)async for attempt in retryer:with attempt:embedding = (await OllamaEmbeddings(model=self.model,).embed_query(text) or [] )return (embedding, len(text))except RetryError as e:self._reporter.error(message="Error at embed_with_retry()",details={self.__class__.__name__: str(e)},)return ([], 0)else:# TODO: why not just throw in this case?            return ([], 0)


 5

GraphRAG 效果测试

第一、local 查询

第二、global 查询



53AI,企业落地应用大模型首选服务商

产品:大模型应用平台+智能体定制开发+落地咨询服务

承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业

联系我们

售前咨询
186 6662 7370
预约演示
185 8882 0121

微信扫码

与创始人交个朋友

回到顶部

 
扫码咨询