微信扫码
和创始人交个朋友
我要投稿
一、什么是大模型幻觉
相信大家在使用ChatGPT或者其他大模型时会遇到这样的情况,模型答非所问甚至自相矛盾。这种现象我们称为“幻觉”
"幻觉"指的是模型生成的信息或回答不准确或虚假的现象。比如,模型可能在回答问题时编造不真实的细节,或者对事实产生错误的解释。在准确率要求非常高的场景下幻觉是不可接受的,比如新闻领域、医疗领域、金融领域等。
二、大模型幻觉产生的原因
大模型幻觉的形成源于多个方面,大模型产生幻觉的根本原因,主要分为三个关键方面:数据、训练和推理。
1、来源于数据偏差
大模型的知识和能力主要来自于预训练数据,如果预训练数据使用了不完整、存在系统性误差或者过期的数据,那么就很可能导致知识的错误,从而引起幻觉现象。比如:
训练集中某个类别的样本过多,模型可能会过度偏向于预测这个类别,即使在遇到属于其他类别的数据时也是如此。
训练数据的不充分性:训练数据可能无法覆盖所有可能的情况,特别是在一些具有高度多样性的领域,其后果就是当模型遇到训练数据中未出现的情况时,可能会做出错误的预测,因为它没有学习到如何处理这些情况。
预训练阶段:大模型在这一阶段学习通用表征并捕捉广泛的知识,通常采用基于transformer的架构,在庞大的语料库中进行因果语言建模。但是,固有的架构设计和研究人员所采用的特定训练策略,可能会产生与幻觉相关的问题。比如:过拟合使得模型在训练数据上学习得太过精确,以至于它不仅学习了数据的真实分布,还学习了数据中的随机噪声和特异性特征。
四、减少大模型幻觉产生的策略
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-02-21
DeepRAG:LLM时代的智能检索革命(实测提升准确率21.99%)
2025-02-21
从零开始优化 RAG 流程的终极指南,解决检索增强生成的核心挑战
2025-02-20
本地运行DeepSeek R1 + RAG系统
2025-02-20
传统分块已死?Agentic Chunking拯救语义断裂,实测RAG准确率飙升40%,LLM开发者必看!
2025-02-20
传统 RAG 与 Agentic RAG对比
2025-02-20
企业级内部的RAG系统,已经支持DeepSeek,PHP语言,可以做内部网的RAG
2025-02-19
尊敬的 IT 部门,请停止尝试构建自己的 RAG
2025-02-19
RAG+的一些前沿动向:兼看长文本、投标写作以及R1可解释性的有趣探索
2024-09-04
2024-10-27
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-02-15
2025-02-12
2025-02-05
2025-02-05
2025-01-24
2025-01-24
2025-01-20
2025-01-18