微信扫码
与创始人交个朋友
我要投稿
Milvus 提供高级的索引算法,能够高效存储十亿级向量并执行大规模向量相似性计算和搜索。Milvus 还与主流 AI 框架集成,简化了开发 RAG 驱动的 LLM 应用的流程。
增强组件
在使用向量数据库执行向量相似性搜索之后,我们进入了 RAG 应用的增强阶段。将上一步检索到的 top-k 最相关的上下文与用户查询相结合,形成一个完整的 Prompt 作为 LLM 的输入。
根据您的具体用例,您可以尝试不同的 Prompt。但是,Prompt 的基本模板通常如下所示:
Use the following pieces of context to answer the question at the end.
{context}
Question: {question}
Helpful Answer:
生成组件
RAG 的最后一个组件是生成组件。在这个阶段,我们选择的 LLM(如 GPT、Llama、Mistral、Claude 等 LLM 模型)会根据包含用户查询和最相关上下文的 Prompt 生成响应。
LLM 将基于提供的上下文来生成对用户查询的回答,而不是仅仅依赖其训练数据中的知识。这种方法有助于减轻 LLM 产生幻觉的风险。
下图展示了 RAG 应用的完整组件和工作流程:
03
Milvus Lite、Llama 3 与 LlamaIndex 简介
在接下来的部分中,我们将使用 Milvus 和流行的 AI 框架(如 LlamaIndex)构建一个 RAG 驱动的 LLM 应用。让我们简单介绍一下本项目将使用到的工具。
Milvus Lite
Milvus 是一款开源向量数据库,能够存储十亿级向量数据并执行高效的向量搜索。在接下来的 Demo 中,我们将使用 Milvus 来存储上下文向量并计算查询向量与上下文向量间相似度。
Milvus 提供多种安装方式及部署模式。其中最简单的就是安装 Milvus Lite。Milvus Lite 是 Milvus 的轻量级版本,适用于快速开发原型,例如希望尝试不同的文本文档分块(Chunking)策略或 Embedding 模型的场景。
Milvus Lite 的安装方法非常简单。您只需要执行以下 pip 命令:
pip install "pymilvus>=2.4.2"
安装后,您可以立即使用 Python 轻松初始化 Milvus。需要注意的是,如果您想存储多达一百万个向量嵌入,Milvus Lite 支持最多存储 100 万条向量数据。
如果您需要存储更多的向量数据,并用于生产环境,请使用 Docker 或者 Kubernetes 安装、部署和运行 Milvus。详情请阅读安装指南。
Llama3
除了向量数据库以外,RAG 应用的另一个关键组件是 LLM。市面上有多种开源 LLM,其中 Llama 和 Mistral 是较为受欢迎的两种。在本文将使用 Meta 开发的 Llama3 模型作为我们的 LLM。Llama3 模型相比 Llama2 基于 7 倍更大的数据集进行预训练,极大提升了性能。
Llama3 模型有两种不同的大小:80 亿参数和 700 亿参数。如下图性能测试结果所示,Llama 3 两种大小的模型的性能相比同等规模的 LLM 都更具优势。
本文将使用包含 80 亿参数的 Llama3 模型。默认情况下,该模型需要大约 32 GB 的 VRAM。这超过了免费 GPU 的可用 VRAM 上限。但是,我们可以通过执行 4-bit 量化(quantization)将模型大小缩减到约 4 GB VRAM。
有多种方法可以加载 Llama3 模型并进行 4-bit 量化。第一种方法使用 HuggingFace 和 bitsandbytes 库。第二种方法是安装 Ollama 并直接通过 Ollama 加载模型。Ollama 上的 LLM 已默认进行过 4-bit 量化。
文本将使用 Ollama 轻松地在本地机器上运行各种 LLM。请参考 Ollama 文档获取最新的安装指南。
Ollama 安装完成后,您就可以下载 LLM。本文使用 Llama3,因此,您可以运行以下命令:
ollama run llama3
LlamaIndex
LlamaIndex 是用于协调 RAG Pipeline 的框架。在前文中,我们已经为 RAG 应用安装了向量数据库和 LLM。现在缺少的是将这两个组件连接起来,构建一个功能齐全的 RAG 系统的框架。这正是 LlamaIndex 的作用。
LlamaIndex 易于使用,能够预处理来自各种数据源的输入数据,将其转换为 Embedding 向量并存储在向量数据库中,搜索相关上下文,将搜索结果结合查询发送到 LLM,最终输出 LLM 响应。
如下所示,我们可以使用一个简单的 pip 命令来安装 LlamaIndex。
pip install llamapip install llama-index-vector-stores-milvus llama-index-llms-ollama llama-index-embeddings-huggingface
04
使用 Milvus Lite、LLama3 和 LlamaIndex 搭建 RAG 聊天机器人
现在让我们使用 Milvus Lite、Llama3 和 LlamaIndex 搭建一个 RAG 系统吧!本示例将构建一个聊天机器人,用于回答针对《Attention is All You Need》这篇论文的问题。这篇论文主要介绍了 Transformer 架构。您也可以替换本示例中使用的研究论文。
您可以通过 notebook 获取本文中所有代码并跟随以下指南一起操作。
首先,让我们导入所有需要的库:
!pip install arxiv
import arxiv
from llama_index.core import SimpleDirectoryReader
from llama_index.vector_stores.milvus import MilvusVectorStore
from llama_index.core import VectorStoreIndex, Settings
from llama_index.llms.ollama import Ollama
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from pymilvus import MilvusClient
我们可以通过 Arxiv 的官方 Python 库将 PDF 版的研究论文下载到本地机器。
dir_name = "./Documents/pdf_data/"
arxiv_client = arxiv.Client()
paper = next(arxiv.Client().results(arxiv.Search(id_list=["1706.03762"])))
# Download the PDF to a specified directory with a custom filename.
paper.download_pdf(dirpath=dir_name, filename="attention.pdf")
在以上代码中,我们通过其 ID 将论文《Attention is All You Need》下载到本地目录。Arxiv 上的每篇研究论文在 URL 中都有其 ID,您可以直接复制并粘贴其他的论文 ID 到上面的代码中进行替换。
接下来,初始化 Milvus 向量数据库和 Llama3 模型。将原始输入文本转换为向量时,我们将使用可以从 HuggingFace 上的 BGE base 模型。
vector_store = MilvusVectorStore(uri="./milvus_rag_demo.db",dim=768, overwrite=True)embedding_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5")llm = Ollama(model="llama3",temperature=0.1, request_timeout=480.0)
通过上述代码,我们初始化了 Milvus 向量数据库。Milvus 中可存储的向量维度为 768,与 BGE base 模型生成的 Embedding 向量维度一致。
现在,让我们 Ingest 下载的 PDF 论文。我们只需要调用 LlamaIndex 的 SimpleDirectoryReader 对象即可。
pdf_document = SimpleDirectoryReader(
input_files=[f"{dir_name}attention.pdf"]
).load_data()
print("Number of Input documents:", len(pdf_document))
# OR execute this command if you have multiple PDFs inside the directory
pdf_document = SimpleDirectoryReader(
dir_name, recursive=True
).load_data()
"""
Output:
Number of Input documents: 15
"""
输入文档的数量是 15,这是因为我们使用的论文共有 15 页。
我们需要使用 LlamaIndex 的 Settings class 将 LLM 与 Embedding 模型进行绑定。在 Settings 中,我们还可以自定义 PDF 文档的分块大小(chunk size)和 overlap。
Settings.llm = llmSettings.embed_model = embedding_modelSettings.chunk_size = 128Settings.chunk_overlap = 64
然后,将 PDF 文档 Ingest 到 Milvus 向量数据库中。通过以下命令,PDF 文档将被分割成块(Chunk)。使用 BGE base 模型将每个 Chunk 转换为向量。最后,将这些 Chunk 向量存储在 Milvus 向量数据库中。
index = VectorStoreIndex.from_documents(pdf_document)
print("Number of nodes:", len(index.docstore.docs))
query_engine = index.as_query_engine()
"""
Output:
Number of nodes: 196
"""
可以看到,现在向量数据库中共有 196 个 Chunk 的向量。我们还在 index 中调用了as_query_engine 的方法实现对向量数据库中的数据提出问题。
以上就是使用 LlamaIndex 构建一个完整的 RAG Pipeline 的所有步骤。现在我们可以问一个与研究论文相关的问题。例如 “What is the benefit of multi-head attention instead of single-head attention?”。
query = "What is the benefit of multi-head attention instead of single-head attention?"
result = query_engine.query(query)
print(result)
"""
Output:
Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions. With a single attention head, averaging inhibits this.
"""
基于研究论文中提供的信息,不难看出我们得到了一个高度相关的答案!同样,您可以通过 RAG 应用询问更复杂的问题。
05
优化 RAG Pipeline
在生产环境中部署 RAG Pipline 比原型开发更具挑战!一个最常见的问题就是如何评估 RAG 系统生成的响应质量。好在市面上有几个开源工具可以用于评估 RAG 系统响应质量,比如 Ragas 和 TruLens-Eval。
如需评估检索组件的质量,Ragas 也提供了测试上下文精确度的方法。Ragas 中有关忠实度(faithfulness)和答案相关性(answer relevancy)等指标可用于评估生成组件质量。更多信息,请参考文档。https://docs.ragas.io/en/stable/concepts/metrics/index.html
RAG 修炼手册|如何评估 RAG 应用?https://zilliz.com.cn/blog/how-to-evaluate-rag-zilliz
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-11-23
FastRAG半结构化RAG实现思路及OpenAI O1-long COT蒸馏路线思考
2024-11-23
检索增强生成(RAG):解密AI如何融合记忆与搜索
2024-11-23
如何提高RAG系统准确率?12大常见痛点及巧妙解!
2024-11-23
RAG 2.0性能提升:优化索引与召回机制的策略与实践
2024-11-22
RAG技术在实际应用中的挑战与解决方案
2024-11-22
从普通RAG到RAPTOR,10个最新的RAG框架
2024-11-22
如何使用 RAG 提高 LLM 成绩
2024-11-21
提升RAG性能的全攻略:优化检索增强生成系统的策略大揭秘 | 深度好文
2024-07-18
2024-05-05
2024-07-09
2024-05-19
2024-07-09
2024-06-20
2024-07-07
2024-07-07
2024-07-08
2024-07-09
2024-11-06
2024-11-06
2024-11-05
2024-11-04
2024-10-27
2024-10-25
2024-10-21
2024-10-21