AI知识库

53AI知识库

学习大模型的前沿技术与行业应用场景


私有部署的需求Fine-Tuning
发布日期:2024-09-05 05:07:31 浏览次数: 1772 来源:新时代编程2088

坚持写作第12天:开源模型原生的能力不满足业务需求,私有部署的需求Fine-Tuning

前言

  1. 了解机器学习的基本概念
  2. 掌握模型训练/微调/小参数量微调的操作过程
  3. 掌握模型微调/小参数量微调关键「超参」
  4. 掌握训练数据的选择、准备、清洗等方法与思路
  5. 训练一个垂直领域的大模型

面向初学者的深度学习课:

  1. 吴恩达《人人 AI》(特别通俗) https://www.zhihu.com/education/video-course/1556316449043668992

  2. 李沐的深度学习课 (稍微深一点) https://www.zhihu.com/education/video-course/1647604835598092705

在这个更广泛的定位上,已经有很多优秀的课程。本课程只针对大模型微调的知识基础展开。

什么时候需要 Fine-Tuning

  1. 有私有部署的需求
  2. 开源模型原生的能力不满足业务需求

先看一个例子

订酒店机器人

[
    {
        "role""user",
        "content""您好,我要找一家舒适型酒店住宿,然后希望酒店提供暖气与行李寄存。"
    },
    {
        "role""search",
        "arguments": {
            "facilities": [
                "暖气",
                "行李寄存"
            ],
            "type""舒适型"
        }
    },
    {
        "role""return",
        "records": [
            {
                "name""北京香江戴斯酒店",
                "type""舒适型",
                "address""北京东城区南河沿大街南湾子胡同1号",
                "subway""天安门东地铁站B口",
                "phone""010-65127788",
                "facilities": [
                    "酒店各处提供wifi",
                    "国际长途电话",
                    "吹风机",
                    "24小时热水",
                    "暖气",
                    "西式餐厅",
                    "中式餐厅",
                    "残疾人设施",
                    "会议室",
                    "无烟房",
                    "商务中心",
                    "早餐服务",
                    "接机服务",
                    "接待外宾",
                    "洗衣服务",
                    "行李寄存",
                    "租车",
                    "叫醒服务"
                ],
                "price"328.0,
                "rating"4.2,
                "hotel_id"10
            }
        ]
    },
    {
        "role""assistant",
        "content""那推荐您北京香江戴斯酒店,符合您的全部住宿要求并且价格又比较合适的酒店。"
    },
    {
        "role""user",
        "content""这家酒店的价格是多少?"
    },
    {
        "role""assistant",
        "content""这家酒店的价格是每晚328.0元。"
    },
    {
        "role""user",
        "content""好的,那就预订北京香江戴斯酒店吧!"
    },
    {
       "role""assistant",
        "content""好的,祝您入住愉快!"
    }
]

一、先找找感觉

上手操作一个简单的例子:

  • 情感分类
    • 输入:电影评论
    • 输出:['负面','正面']
    • 数据源:https://huggingface.co/datasets/rotten_tomatoes

1.1、工具:介绍一个模型训练利器 Hugging Face

  • 官网:http://www.huggingface.co
  • 相当于面向 NLP 模型的 Github
  • 尤其基于 transformer 的开源模型非常全
  • 封装了模型、数据集、训练器等,使模型的下载、使用、训练都非常方便

安装依赖

# pip安装
pip install transformers # 安装最新的版本
pip install transformers == 4.30 # 安装指定版本
# conda安装
conda install -c huggingface transformers  # 只4.0以后的版本

1.2、操作流程

注意:

  • 以下的代码,都不要在Jupyter笔记上直接运行,会死机!!

  • 请下载左边的脚本`experiments/tiny/train.py`,在实验服务器上运行。

  1. 导入相关库
import datasets
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModel
from transformers import AutoModelForCausalLM
from transformers import TrainingArguments, Seq2SeqTrainingArguments
from transformers import Trainer, Seq2SeqTrainer
import transformers
from transformers import DataCollatorWithPadding
from transformers import TextGenerationPipeline
import torch
import numpy as np
import os, re
from tqdm import tqdm
import torch.nn as nn
  1. 加载数据集

通过HuggingFace,可以指定数据集名称,运行时自动下载

# 数据集名称
DATASET_NAME = "rotten_tomatoes" 

# 加载数据集
raw_datasets = load_dataset(DATASET_NAME)

# 训练集
raw_train_dataset = raw_datasets["train"]

# 验证集
raw_valid_dataset = raw_datasets["validation"]
  1. 加载模型

通过HuggingFace,可以指定模型名称,运行时自动下载

# 模型名称
MODEL_NAME = "gpt2" 

# 加载模型 
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME,trust_remote_code=True)
  1. 加载 Tokenizer

通过HuggingFace,可以指定模型名称,运行时自动下载对应Tokenizer

# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,trust_remote_code=True)
tokenizer.add_special_tokens({'pad_token''[PAD]'})
tokenizer.pad_token_id = 0
# 其它相关公共变量赋值

# 设置随机种子:同个种子的随机序列可复现
transformers.set_seed(42)

# 标签集
named_labels = ['neg','pos']

# 标签转 token_id
label_ids = [
    tokenizer(named_labels[i],add_special_tokens=False)["input_ids"][0
    for i in range(len(named_labels))
]
  1. 处理数据集:转成模型接受的输入格式
  • <-100><-100>...<OUTPUT TOKEN IDS><-100>...<-100>
  • <INPUT 1.1><INPUT 1.2>...<EOS_TOKEN_ID><OUTPUT TOKEN IDS><PAD>...<PAD>
  • <INPUT 2.1><INPUT 2.2>...<EOS_TOKEN_ID><OUTPUT TOKEN IDS><PAD>...<PAD>
  • 拼接输入输出:<INPUT TOKEN IDS><EOS_TOKEN_ID><OUTPUT TOKEN IDS>
  • PAD成相等长度:
  • 标识出参与 Loss 计算的 Tokens (只有输出 Token 参与 Loss 计算)
    MAX_LEN=32   #最大序列长度(输入+输出)
    DATA_BODY_KEY = "text" # 数据集中的输入字段名
    DATA_LABEL_KEY = "label" #数据集中输出字段名

    # 定义数据处理函数,把原始数据转成input_ids, attention_mask, labels
    def process_fn(examples):
        model_inputs = {
                "input_ids": [],
                "attention_mask": [],
                "labels": [],
            }
        for i in range(len(examples[DATA_BODY_KEY])):
            inputs = tokenizer(examples[DATA_BODY_KEY][i],add_special_tokens=False)
            label = label_ids[examples[DATA_LABEL_KEY][i]]
            input_ids = inputs["input_ids"] + [tokenizer.eos_token_id, label]
            
            raw_len = len(input_ids)
            input_len = len(inputs["input_ids"]) + 1

            if raw_len >= MAX_LEN:
                input_ids = input_ids[-MAX_LEN:]
                attention_mask = [1] * MAX_LEN
                labels = [-100]*(MAX_LEN - 1) + [label]
            else:
                input_ids = input_ids + [tokenizer.pad_token_id] * (MAX_LEN - raw_len)
                attention_mask = [1] * raw_len + [0] * (MAX_LEN - raw_len)
                labels = [-100]*input_len + [label] + [-100] * (MAX_LEN - raw_len)
            model_inputs["input_ids"].append(input_ids)
            model_inputs["attention_mask"].append(attention_mask)
            model_inputs["labels"].append(labels)
        return model_inputs
    # 处理训练数据集
    tokenized_train_dataset = raw_train_dataset.map(
        process_fn,
        batched=True,
        remove_columns=raw_train_dataset.columns,
        desc="Running tokenizer on train dataset",
    )

    # 处理验证数据集
    tokenized_valid_dataset = raw_valid_dataset.map(
        process_fn,
        batched=True,
        remove_columns=raw_valid_dataset.columns,
        desc="Running tokenizer on validation dataset",
    )
    1. 定义数据规整器:训练时自动将数据拆分成 Batch
    # 定义数据校准器(自动生成batch)
    collater = DataCollatorWithPadding(
        tokenizer=tokenizer, return_tensors="pt",
    )
    1. 定义训练 超参:比如学习率
    LR=2e-5         # 学习率
    BATCH_SIZE=8    # Batch大小
    INTERVAL=100    # 每多少步打一次 log / 做一次 eval

    # 定义训练参数
    training_args = TrainingArguments(
        output_dir="./output",              # checkpoint保存路径
        evaluation_strategy="steps",        # 按步数计算eval频率
        overwrite_output_dir=True,
        num_train_epochs=1,                 # 训练epoch数
        per_device_train_batch_size=BATCH_SIZE,     # 每张卡的batch大小
        gradient_accumulation_steps=1,              # 累加几个step做一次参数更新
        per_device_eval_batch_size=BATCH_SIZE,      # evaluation batch size
        eval_steps=INTERVAL,                # 每N步eval一次
        logging_steps=INTERVAL,             # 每N步log一次
        save_steps=INTERVAL,                # 每N步保存一个checkpoint
        learning_rate=LR,                   # 学习率
    )
    1. 定义训练器
    # 节省显存
    model.gradient_checkpointing_enable()

    # 定义训练器
    trainer = Trainer(
        model=model, # 待训练模型
        args=training_args, # 训练参数
        data_collator=collater, # 数据校准器
        train_dataset=tokenized_train_dataset,  # 训练集
        eval_dataset=tokenized_valid_dataset,   # 验证集
        # compute_metrics=compute_metric,         # 计算自定义评估指标
    )
    1. 开始训练
    # 开始训练
    trainer.train()

    总结上述过程

    1. 加载数据集
    2. 数据预处理:
    • 将输入输出按特定格式拼接
    • 文本转 Token IDs
    • 通过 labels 标识出哪部分是输出(只有输出的 token 参与 loss 计算)
    • 加载模型、Tokenizer
    • 定义数据规整器
    • 定义训练超参:学习率、批次大小、...
    • 定义训练器
    • 开始训练
    • 划重点:    

      • 记住上面的流程,你就能跑通模型训练过程

      • 理解下面的知识,你就能训练好模型效果

      二、什么是模型

      尝试: 用简单的数学语言表达概念

      2.1、通俗(不严谨)的说、模型是一个函数:

      • 它接收输入:可以是一个词、一个句子、一篇文章或图片、语音、视频 ...
        • 这些物体都被表示成一个数学「矩阵」(其实应该叫张量,tensor)
      • 它预测输出
        • 可以是「是否」({0,1})、标签({0,1,2,3...})、一个数值(回归问题)、下一个词的概率 ...
      • 它的表达式就是网络结构(这里特指深度学习)
      • 它有一组参数 ,这就是我们要训练的部分

      把它想象成一个方程:    

      1. 每条数据就是一对儿 ,它们是常量

      2. 参数是未知数,是变量

      3. 就是表达式:我们不知道真实的公式是什么样的,所以假设了一个足够复杂的公式(比如,一个特定结构的神经网络)

      4. 这个求解这个方程(近似解)就是训练过程

      通俗的讲: 训练,就是确定这组参数的取值

      • 用数学(数值分析)方法找到使模型在训练集上表现足够好的一个值

      • 表现足够好,就是说,对每个数据样本,使 的值尽可能接近

      2.2、一个最简单的神经网络

      一个神经元:

    把很多神经元连接起来,就成了神经网络:、...

    这里的叫激活函数,有很多种形式

    现今的大模型中常用的激活函数包括:ReLU、GELU、Swish


    思考: 这里如果没有激活函数会怎样?

    三、什么是模型训练

    我们希望找到一组参数,使模型预测的输出与真实的输出,尽可能的接近

    这里,我们(至少)需要两个要素:

    • 一个数据集,包含个输入输出的例子(称为样本):
    • 一个损失函数,衡量模型预测的输出与真实输出之间的差距:

    3.1、模型训练本质上是一个求解最优化问题的过程

    3.2、怎么求解

    回忆一下梯度的定义

    从最简单的情况说起:梯度下降与凸问题

    梯度决定了函数变化的方向,每次迭代更新我们会收敛到一个极值

    其中,叫做学习率,它和梯度的模数共同决定了每步走多远

    3.3、现实总是没那么简单(1):在整个数据集上求梯度,计算量太大了

    经验:    

    • 如果全量参数训练:条件允许的情况下,先尝试Batch Size大些

    • 小参数量微调:Batch Size 大不一定就好,看稳定性

    3.4、现实总是没那么简单(2):深度学习没有全局最优解(非凸问题)


    3.5、现实总是没那么简单(3):学习率也很关键,甚至需要动态调整


    划重点:适当调整学习率(Learning Rate),避免陷入很差的局部解或者跳过了好的解

    四、求解器

    为了让训练过程更好的收敛,人们设计了很多更复杂的求解器

    • 比如:SGD、L-BFGS、Rprop、RMSprop、Adam、AdamW、AdaGrad、AdaDelta 等等
    • 但是,好在对于Transformer最常用的就是 Adam 或者 AdamW

    五、一些常用的损失函数

    • 两个数值的差距,Mean Squared Error: (等价于欧式距离,见下文)

    • 两个向量之间的(欧式)距离:

    • 两个向量之间的夹角(余弦距离):

    • 两个概率分布之间的差异,交叉熵: ——假设是概率分布 p,q 是离散的

    • 这些损失函数也可以组合使用(在模型蒸馏的场景常见这种情况),例如,其中是一个预先定义的权重,也叫一个「超参」

    思考: 你能找到这些损失函数和分类、聚类、回归问题之间的关系吗?

    六、再动手复习一下上述过程

    用 PyTorch 训练一个最简单的神经网络

    数据集(MNIST)样例:

    输入一张 28×28 的图像,输出标签 0--9

    from __future__ import print_function
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    from torchvision import datasets, transforms
    from torch.optim.lr_scheduler import StepLR

    BATCH_SIZE = 64
    TEST_BACTH_SIZE = 1000
    EPOCHS = 15
    LR = 0.01
    SEED = 42
    LOG_INTERVAL = 100

    # 定义一个全连接网络
    class FeedForwardNet(nn.Module):
        def __init__(self):
            super().__init__()
            # 第一层784维输入、256维输出 -- 图像大小28×28=784
            self.fc1 = nn.Linear(784256)
            # 第二层256维输入、128维输出
            self.fc2 = nn.Linear(256128)
            # 第三层128维输入、64维输出
            self.fc3 = nn.Linear(12864)
            # 第四层64维输入、10维输出 -- 输出类别10类(0,1,...9)
            self.fc4 = nn.Linear(6410)

            # Dropout module with 0.2 drop probability
            self.dropout = nn.Dropout(p=0.2)

        def forward(self, x):
            # 把输入展平成1D向量
            x = x.view(x.shape[0], -1)

            # 每层激活函数是ReLU,额外加dropout
            x = self.dropout(F.relu(self.fc1(x)))
            x = self.dropout(F.relu(self.fc2(x)))
            x = self.dropout(F.relu(self.fc3(x)))

            # 输出为10维概率分布
            x = F.log_softmax(self.fc4(x), dim=1)

            return x

    # 训练过程
    def train(model, loss_fn, device, train_loader, optimizer, epoch):
        # 开启梯度计算
        model.train()
        for batch_idx, (data_input, true_label) in enumerate(train_loader):
            # 从数据加载器读取一个batch
            # 把数据上载到GPU(如有)
            data_input, true_label = data_input.to(device), true_label.to(device)
            # 求解器初始化(每个batch初始化一次)
            optimizer.zero_grad()
            # 正向传播:模型由输入预测输出
            output = model(data_input)
            # 计算loss
            loss = loss_fn(output, true_label) 
            # 反向传播:计算当前batch的loss的梯度
            loss.backward()
            # 由求解器根据梯度更新模型参数
            optimizer.step()

            # 间隔性的输出当前batch的训练loss
            if batch_idx % LOG_INTERVAL == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data_input), len(train_loader.dataset),
                    100. * batch_idx / len(train_loader), loss.item()))


    # 计算在测试集的准确率和loss
    def test(model, loss_fn, device, test_loader):
        model.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                # sum up batch loss
                test_loss += loss_fn(output, target, reduction='sum').item()
                # get the index of the max log-probability
                pred = output.argmax(dim=1, keepdim=True)
                correct += pred.eq(target.view_as(pred)).sum().item()

        test_loss /= len(test_loader.dataset)

        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))


    def main():
        # 检查是否有GPU
        use_cuda = torch.cuda.is_available()

        # 设置随机种子(以保证结果可复现)
        torch.manual_seed(SEED)

        # 训练设备(GPU或CPU)
        device = torch.device("cuda" if use_cuda else "cpu")

        # 设置batch size
        train_kwargs = {'batch_size': BATCH_SIZE}
        test_kwargs = {'batch_size': TEST_BACTH_SIZE}

        if use_cuda:
            cuda_kwargs = {'num_workers'1,
                           'pin_memory'True,
                           'shuffle'True}
            train_kwargs.update(cuda_kwargs)
            test_kwargs.update(cuda_kwargs)

        # 数据预处理(转tensor、数值归一化)
        transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])

        # 自动下载MNIST数据集
        dataset_train = datasets.MNIST('data', train=True, download=True,
                                       transform=transform)
        dataset_test = datasets.MNIST('data', train=False,
                                      transform=transform)

        # 定义数据加载器(自动对数据加载、多线程、随机化、划分batch、等等)
        train_loader = torch.utils.data.DataLoader(dataset_train, **train_kwargs)
        test_loader = torch.utils.data.DataLoader(dataset_test, **test_kwargs)

        # 创建神经网络模型
        model = FeedForwardNet().to(device)

        # 指定求解器
        optimizer = optim.SGD(model.parameters(), lr=LR)
        # scheduler = StepLR(optimizer, step_size=1, gamma=0.9)

        # 定义loss函数
        # 注:nll 作用于 log_softmax 等价于交叉熵,感兴趣的同学可以自行推导
        # https://blog.csdn.net/weixin_38145317/article/details/103288032
        loss_fn = F.nll_loss

        # 训练N个epoch
        for epoch in range(1, EPOCHS + 1):
            train(model, loss_fn, device, train_loader, optimizer, epoch)
            test(model, loss_fn, device, test_loader)
            # scheduler.step()


    if __name__ == '__main__':
        main()
    /opt/conda/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
    from .autonotebook import tqdm as notebook_tqdm
    Train Epoch: 1 [0/60000 (0%)]	Loss: 2.287443
    Train Epoch: 1 [6400/60000 (11%)] Loss: 2.284967
    Train Epoch: 1 [12800/60000 (21%)] Loss: 2.273498
    Train Epoch: 1 [19200/60000 (32%)] Loss: 2.022655
    Train Epoch: 1 [25600/60000 (43%)] Loss: 1.680803
    Train Epoch: 1 [32000/60000 (53%)] Loss: 1.322924
    Train Epoch: 1 [38400/60000 (64%)] Loss: 0.978875
    Train Epoch: 1 [44800/60000 (75%)] Loss: 0.955985
    Train Epoch: 1 [51200/60000 (85%)] Loss: 0.670422
    Train Epoch: 1 [57600/60000 (96%)] Loss: 0.821590

    Test set: Average loss: 0.5133, Accuracy: 8522/10000 (85%)

    Train Epoch: 2 [0/60000 (0%)] Loss: 0.740346
    Train Epoch: 2 [6400/60000 (11%)] Loss: 0.697988
    Train Epoch: 2 [12800/60000 (21%)] Loss: 0.676830
    Train Epoch: 2 [19200/60000 (32%)] Loss: 0.531716
    Train Epoch: 2 [25600/60000 (43%)] Loss: 0.457828
    Train Epoch: 2 [32000/60000 (53%)] Loss: 0.621303
    Train Epoch: 2 [38400/60000 (64%)] Loss: 0.354285
    Train Epoch: 2 [44800/60000 (75%)] Loss: 0.588098
    Train Epoch: 2 [51200/60000 (85%)] Loss: 0.530143
    Train Epoch: 2 [57600/60000 (96%)] Loss: 0.533157

    Test set: Average loss: 0.3203, Accuracy: 9035/10000 (90%)

    Train Epoch: 3 [0/60000 (0%)] Loss: 0.425095
    Train Epoch: 3 [6400/60000 (11%)] Loss: 0.301024
    Train Epoch: 3 [12800/60000 (21%)] Loss: 0.330063
    Train Epoch: 3 [19200/60000 (32%)] Loss: 0.362905
    Train Epoch: 3 [25600/60000 (43%)] Loss: 0.387243
    Train Epoch: 3 [32000/60000 (53%)] Loss: 0.436325
    Train Epoch: 3 [38400/60000 (64%)] Loss: 0.266472
    Train Epoch: 3 [44800/60000 (75%)] Loss: 0.463275
    Train Epoch: 3 [51200/60000 (85%)] Loss: 0.264305
    Train Epoch: 3 [57600/60000 (96%)] Loss: 0.480805

    Test set: Average loss: 0.2456, Accuracy: 9262/10000 (93%)

    Train Epoch: 4 [0/60000 (0%)] Loss: 0.343381
    Train Epoch: 4 [6400/60000 (11%)] Loss: 0.222288
    Train Epoch: 4 [12800/60000 (21%)] Loss: 0.200421
    Train Epoch: 4 [19200/60000 (32%)] Loss: 0.301372
    Train Epoch: 4 [25600/60000 (43%)] Loss: 0.282800
    Train Epoch: 4 [32000/60000 (53%)] Loss: 0.424678
    Train Epoch: 4 [38400/60000 (64%)] Loss: 0.160868
    Train Epoch: 4 [44800/60000 (75%)] Loss: 0.373828
    Train Epoch: 4 [51200/60000 (85%)] Loss: 0.273351
    Train Epoch: 4 [57600/60000 (96%)] Loss: 0.498258

    Test set: Average loss: 0.2007, Accuracy: 9388/10000 (94%)

    Train Epoch: 5 [0/60000 (0%)] Loss: 0.175644
    Train Epoch: 5 [6400/60000 (11%)] Loss: 0.349571
    Train Epoch: 5 [12800/60000 (21%)] Loss: 0.231020
    Train Epoch: 5 [19200/60000 (32%)] Loss: 0.277835
    Train Epoch: 5 [25600/60000 (43%)] Loss: 0.248639
    Train Epoch: 5 [32000/60000 (53%)] Loss: 0.338623
    Train Epoch: 5 [38400/60000 (64%)] Loss: 0.174397
    Train Epoch: 5 [44800/60000 (75%)] Loss: 0.384121
    Train Epoch: 5 [51200/60000 (85%)] Loss: 0.238978
    Train Epoch: 5 [57600/60000 (96%)] Loss: 0.279425

    Test set: Average loss: 0.1718, Accuracy: 9461/10000 (95%)

    Train Epoch: 6 [0/60000 (0%)] Loss: 0.146129
    Train Epoch: 6 [6400/60000 (11%)] Loss: 0.270161
    Train Epoch: 6 [12800/60000 (21%)] Loss: 0.157764
    Train Epoch: 6 [19200/60000 (32%)] Loss: 0.274829
    Train Epoch: 6 [25600/60000 (43%)] Loss: 0.224544
    Train Epoch: 6 [32000/60000 (53%)] Loss: 0.273076
    Train Epoch: 6 [38400/60000 (64%)] Loss: 0.091917
    Train Epoch: 6 [44800/60000 (75%)] Loss: 0.318671
    Train Epoch: 6 [51200/60000 (85%)] Loss: 0.220927
    Train Epoch: 6 [57600/60000 (96%)] Loss: 0.353987

    Test set: Average loss: 0.1518, Accuracy: 9534/10000 (95%)

    Train Epoch: 7 [0/60000 (0%)] Loss: 0.169520
    Train Epoch: 7 [6400/60000 (11%)] Loss: 0.189826
    Train Epoch: 7 [12800/60000 (21%)] Loss: 0.139019
    Train Epoch: 7 [19200/60000 (32%)] Loss: 0.231475
    Train Epoch: 7 [25600/60000 (43%)] Loss: 0.213273
    Train Epoch: 7 [32000/60000 (53%)] Loss: 0.326085
    Train Epoch: 7 [38400/60000 (64%)] Loss: 0.124614
    Train Epoch: 7 [44800/60000 (75%)] Loss: 0.314796
    Train Epoch: 7 [51200/60000 (85%)] Loss: 0.173023
    Train Epoch: 7 [57600/60000 (96%)] Loss: 0.272714

    Test set: Average loss: 0.1353, Accuracy: 9580/10000 (96%)

    Train Epoch: 8 [0/60000 (0%)] Loss: 0.139128
    Train Epoch: 8 [6400/60000 (11%)] Loss: 0.144777
    Train Epoch: 8 [12800/60000 (21%)] Loss: 0.102367
    Train Epoch: 8 [19200/60000 (32%)] Loss: 0.192136
    Train Epoch: 8 [25600/60000 (43%)] Loss: 0.141218
    Train Epoch: 8 [32000/60000 (53%)] Loss: 0.234929
    Train Epoch: 8 [38400/60000 (64%)] Loss: 0.103180
    Train Epoch: 8 [44800/60000 (75%)] Loss: 0.320878
    Train Epoch: 8 [51200/60000 (85%)] Loss: 0.156626
    Train Epoch: 8 [57600/60000 (96%)] Loss: 0.349143

    Test set: Average loss: 0.1235, Accuracy: 9614/10000 (96%)

    Train Epoch: 9 [0/60000 (0%)] Loss: 0.136772
    Train Epoch: 9 [6400/60000 (11%)] Loss: 0.161713
    Train Epoch: 9 [12800/60000 (21%)] Loss: 0.130365
    Train Epoch: 9 [19200/60000 (32%)] Loss: 0.111859
    Train Epoch: 9 [25600/60000 (43%)] Loss: 0.216221
    Train Epoch: 9 [32000/60000 (53%)] Loss: 0.166046
    Train Epoch: 9 [38400/60000 (64%)] Loss: 0.077858
    Train Epoch: 9 [44800/60000 (75%)] Loss: 0.263344
    Train Epoch: 9 [51200/60000 (85%)] Loss: 0.153452
    Train Epoch: 9 [57600/60000 (96%)] Loss: 0.358510

    Test set: Average loss: 0.1135, Accuracy: 9640/10000 (96%)

    Train Epoch: 10 [0/60000 (0%)] Loss: 0.091045
    Train Epoch: 10 [6400/60000 (11%)] Loss: 0.185156
    Train Epoch: 10 [12800/60000 (21%)] Loss: 0.098523
    Train Epoch: 10 [19200/60000 (32%)] Loss: 0.213850
    Train Epoch: 10 [25600/60000 (43%)] Loss: 0.112603
    Train Epoch: 10 [32000/60000 (53%)] Loss: 0.254803
    Train Epoch: 10 [38400/60000 (64%)] Loss: 0.074294
    Train Epoch: 10 [44800/60000 (75%)] Loss: 0.200418
    Train Epoch: 10 [51200/60000 (85%)] Loss: 0.162135
    Train Epoch: 10 [57600/60000 (96%)] Loss: 0.328646

    Test set: Average loss: 0.1075, Accuracy: 9678/10000 (97%)

    Train Epoch: 11 [0/60000 (0%)] Loss: 0.110555
    Train Epoch: 11 [6400/60000 (11%)] Loss: 0.185066
    Train Epoch: 11 [12800/60000 (21%)] Loss: 0.154370
    Train Epoch: 11 [19200/60000 (32%)] Loss: 0.187331
    Train Epoch: 11 [25600/60000 (43%)] Loss: 0.103054
    Train Epoch: 11 [32000/60000 (53%)] Loss: 0.097087
    Train Epoch: 11 [38400/60000 (64%)] Loss: 0.094759
    Train Epoch: 11 [44800/60000 (75%)] Loss: 0.254946
    Train Epoch: 11 [51200/60000 (85%)] Loss: 0.163511
    Train Epoch: 11 [57600/60000 (96%)] Loss: 0.375709

    Test set: Average loss: 0.1001, Accuracy: 9702/10000 (97%)

    Train Epoch: 12 [0/60000 (0%)] Loss: 0.085661
    Train Epoch: 12 [6400/60000 (11%)] Loss: 0.267067
    Train Epoch: 12 [12800/60000 (21%)] Loss: 0.162384
    Train Epoch: 12 [19200/60000 (32%)] Loss: 0.181441
    Train Epoch: 12 [25600/60000 (43%)] Loss: 0.109263
    Train Epoch: 12 [32000/60000 (53%)] Loss: 0.194257
    Train Epoch: 12 [38400/60000 (64%)] Loss: 0.065200
    Train Epoch: 12 [44800/60000 (75%)] Loss: 0.288888
    Train Epoch: 12 [51200/60000 (85%)] Loss: 0.167924
    Train Epoch: 12 [57600/60000 (96%)] Loss: 0.311067

    Test set: Average loss: 0.0956, Accuracy: 9722/10000 (97%)

    Train Epoch: 13 [0/60000 (0%)] Loss: 0.093631
    Train Epoch: 13 [6400/60000 (11%)] Loss: 0.079958
    Train Epoch: 13 [12800/60000 (21%)] Loss: 0.143489
    Train Epoch: 13 [19200/60000 (32%)] Loss: 0.087933
    Train Epoch: 13 [25600/60000 (43%)] Loss: 0.094754
    Train Epoch: 13 [32000/60000 (53%)] Loss: 0.132700
    Train Epoch: 13 [38400/60000 (64%)] Loss: 0.060542
    Train Epoch: 13 [44800/60000 (75%)] Loss: 0.212000
    Train Epoch: 13 [51200/60000 (85%)] Loss: 0.092904
    Train Epoch: 13 [57600/60000 (96%)] Loss: 0.243191

    Test set: Average loss: 0.0912, Accuracy: 9739/10000 (97%)

    Train Epoch: 14 [0/60000 (0%)] Loss: 0.036139
    Train Epoch: 14 [6400/60000 (11%)] Loss: 0.185927
    Train Epoch: 14 [12800/60000 (21%)] Loss: 0.094324
    Train Epoch: 14 [19200/60000 (32%)] Loss: 0.129941
    Train Epoch: 14 [25600/60000 (43%)] Loss: 0.099867
    Train Epoch: 14 [32000/60000 (53%)] Loss: 0.175463
    Train Epoch: 14 [38400/60000 (64%)] Loss: 0.075817
    Train Epoch: 14 [44800/60000 (75%)] Loss: 0.191533
    Train Epoch: 14 [51200/60000 (85%)] Loss: 0.105866
    Train Epoch: 14 [57600/60000 (96%)] Loss: 0.255987

    Test set: Average loss: 0.0875, Accuracy: 9751/10000 (98%)

    Train Epoch: 15 [0/60000 (0%)] Loss: 0.049678
    Train Epoch: 15 [6400/60000 (11%)] Loss: 0.185887
    Train Epoch: 15 [12800/60000 (21%)] Loss: 0.064999
    Train Epoch: 15 [19200/60000 (32%)] Loss: 0.106103
    Train Epoch: 15 [25600/60000 (43%)] Loss: 0.052213
    Train Epoch: 15 [32000/60000 (53%)] Loss: 0.136051
    Train Epoch: 15 [38400/60000 (64%)] Loss: 0.037222
    Train Epoch: 15 [44800/60000 (75%)] Loss: 0.152106
    Train Epoch: 15 [51200/60000 (85%)] Loss: 0.140182
    Train Epoch: 15 [57600/60000 (96%)] Loss: 0.216424

    Test set: Average loss: 0.0850, Accuracy: 9757/10000 (98%)

    如何运行这段代码:

    1. 不要在Jupyter笔记上直接运行

    2. 请将左侧的 `experiments/mnist/train.py` 文件下载到本地

    3. 安装相关依赖包: pip install torch torchvision

    4. 运行:python3 train.py

    尝试

    在 HuggingFace 上找一个简单的数据集,自己实现一个训练过程



    53AI,企业落地大模型首选服务商

    产品:场景落地咨询+大模型应用平台+行业解决方案

    承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业

    联系我们

    售前咨询
    186 6662 7370
    预约演示
    185 8882 0121

    微信扫码

    与创始人交个朋友

    回到顶部

     
    扫码咨询