微信扫码
添加专属顾问
我要投稿
01。
模型概述
02。
Power 调度器
03。
PowerLM-3B
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # or "cpu"
model_path = "ibm/PowerLM-3b"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
prompt = "Write a code to find the maximum value in a list of numbers."
# tokenize the text
input_tokens = tokenizer(prompt, return_tensors="pt")
# transfer tokenized inputs to the device
for i in input_tokens:
input_tokens[i] = input_tokens[i].to(device)
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
print(i)
04。
PowerMoE-3B
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # or "cpu"
model_path = "ibm/PowerMoE-3b"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
prompt = "Write a code to find the maximum value in a list of numbers."
# tokenize the text
input_tokens = tokenizer(prompt, return_tensors="pt")
# transfer tokenized inputs to the device
for i in input_tokens:
input_tokens[i] = input_tokens[i].to(device)
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
print(i)
05。
模型评估
06。
结语
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-03-09
8分钟打造一个DeepSeek API智能测试引擎:当咖啡还没凉,测试报告已出炉
2025-03-09
lceberg 助力 B 站商业化模型样本行级更新的实践
2025-03-09
单卡4090微调DeepSeek-R1-32B
2025-03-08
QwQ总结能力测评,32b小模型真能超过deepseek吗
2025-03-08
为什么vLLM做不到?解密Ollama越级部署黑科技:以DeepSeek-R1-8B为例
2025-03-07
为什么Manus底层模型没用DeepSeek?——Manus六问六答
2025-03-07
Cherry Studio 发布 v1.0.0 版本支持联网搜索
2025-03-07
Claude 3.7 Sonnet 使用结论
2025-02-04
2025-02-04
2024-09-18
2024-07-11
2024-07-09
2024-07-11
2024-07-26
2025-02-05
2025-01-27
2025-02-01