微信扫码
与创始人交个朋友
我要投稿
OpenAI 首席科学家@hwchung27 在MIT演讲中揭示 o1模型训练核心秘密:通过激励模型学习是培养 AGI 系统通用技能的最佳方式。
以下为详情:
Don’t teach. Incentivize.
Non-goal: share specific technical knowledge and experimental results
Goal: share how I think with AI being a running example
Closing
Compute cost is decreasing exponentially
AI researchers should harness this by designing scalable methods
Current generation of LLMs rely on next-token prediction, which can be thought of as weak incentive structure to learn general skills such as reasoning
More generally, we should incentivize models instead of directly teaching specific skills
Emergent abilities necessitate having the right perspective such as unlearning
结束语
计算成本正在呈指数级下降
人工智能研究人员应该通过设计可扩展的方法来利用这一点
当前一代的 LLM 依赖于下一个标记预测,这可以被认为是学习推理等一般技能的弱激励结构
更一般地说,我们应该激励模型,而不是直接教授特定技能
新兴能力需要有正确的观点,例如忘记
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-02-07
我们应如何看待DeepSeek的557.6万美元训练成本?|甲子光年
2025-02-07
10分钟让WPS接入DeepSeek,实现AI赋能
2025-02-07
“李飞飞团队50美元复刻DeepSeek R1”之辨
2025-02-07
DeepSeek V3:AI领域的全新突破,性能与效率双重飞跃
2025-02-06
完整的671B R1塞进本地,详尽教程来了!
2025-02-06
【DeepSeek x 飞书】在飞书智能伙伴搭建平台上用 DeepSeek 模型
2025-02-06
DeepSeek大模型本地部署全攻略:从工具选择到可视化操作
2025-02-06
Llama3.3
2024-09-18
2025-02-04
2024-07-11
2024-07-11
2024-07-26
2024-07-09
2025-02-04
2024-12-29
2024-06-11
2025-01-27