微信扫码
与创始人交个朋友
我要投稿
根据以上分析,步骤如下:
1. 冻结预训练模型的权重: LoRA 不会修改预训练模型的原始权重,而是将它们冻结。
2. 注入秩分解矩阵: 在 Transformer 的每一层,LoRA 向原始权重矩阵 W 添加一个低秩矩阵更新 ΔW,其中 ΔW = BA。
- A 是一个降维矩阵,将输入特征映射到一个低维空间。
- B 是一个升维矩阵,将低维空间的特征映射回原始特征空间。
- A 和 B 的秩远小于 W 的秩。
3. 训练秩分解矩阵: 在微调过程中,只有 A 和 B 的参数会被训练,而原始权重矩阵 W 保持不变。
4. 合并权重矩阵: 在推理阶段,可以将 ΔW 与 W 合并,得到最终的权重矩阵 W' = W + ΔW。
优势:
更少的内存需求: LoRA 只需要存储和更新低秩矩阵 `A` 和 `B`,大大减少了GPU内存需求,使得在单个GPU上微调大型语言模型成为可能。
更快的训练速度: 由于需要更新的参数数量减少,LoRA 的训练速度比全参数微调更快。
更好的性能: LoRA 在许多任务上都取得了与全参数微调相当甚至更好的性能。
易于合并和切换: 不同的LoRA权重可以轻松地与基础模型合并或切换,方便实验和部署。
劣势:
并非所有模型都适用:LoRA 最适合 Transformer 架构的模型,对于其他类型的模型可能需要进行修改。
低秩假设的限制: LoRA 的性能依赖于低秩假设,如果目标任务需要对模型进行大幅度的修改,LoRA 的性能可能会受到限制。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-11-13
无需网络,轻松在手机上离线布署本地大模型
2024-11-13
DataOps for LLM 的数据工程技术架构实践
2024-11-13
LLM性能优化中的一些概念扫盲
2024-11-13
蚂蚁集团 | 提出多任务大模型微调方法:CoBa,LLM最高性能提升13%!
2024-11-12
Scaling Law提出者Ilya发声:大模型预训练效果趋于平缓,扩展正确的东西变得更重要
2024-11-08
Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)
2024-11-08
全参微调与LoRA的区别,及7种LoRA变种方法解析
2024-11-08
开发一款大模型需要经过哪些步骤?开发一款大模型的完整流程
2024-07-11
2024-07-11
2024-07-09
2024-09-18
2024-06-11
2024-07-23
2024-07-20
2024-07-12
2024-07-26
2024-07-23