微信扫码
添加专属顾问
我要投稿
根据以上分析,步骤如下:
1. 冻结预训练模型的权重: LoRA 不会修改预训练模型的原始权重,而是将它们冻结。
2. 注入秩分解矩阵: 在 Transformer 的每一层,LoRA 向原始权重矩阵 W 添加一个低秩矩阵更新 ΔW,其中 ΔW = BA。
- A 是一个降维矩阵,将输入特征映射到一个低维空间。
- B 是一个升维矩阵,将低维空间的特征映射回原始特征空间。
- A 和 B 的秩远小于 W 的秩。
3. 训练秩分解矩阵: 在微调过程中,只有 A 和 B 的参数会被训练,而原始权重矩阵 W 保持不变。
4. 合并权重矩阵: 在推理阶段,可以将 ΔW 与 W 合并,得到最终的权重矩阵 W' = W + ΔW。
优势:
更少的内存需求: LoRA 只需要存储和更新低秩矩阵 `A` 和 `B`,大大减少了GPU内存需求,使得在单个GPU上微调大型语言模型成为可能。
更快的训练速度: 由于需要更新的参数数量减少,LoRA 的训练速度比全参数微调更快。
更好的性能: LoRA 在许多任务上都取得了与全参数微调相当甚至更好的性能。
易于合并和切换: 不同的LoRA权重可以轻松地与基础模型合并或切换,方便实验和部署。
劣势:
并非所有模型都适用:LoRA 最适合 Transformer 架构的模型,对于其他类型的模型可能需要进行修改。
低秩假设的限制: LoRA 的性能依赖于低秩假设,如果目标任务需要对模型进行大幅度的修改,LoRA 的性能可能会受到限制。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-25
DeepSeek + Dify 企业级大模型私有化部署指南
2025-04-24
自主构建MCP,轻松实现云端部署!
2025-04-24
大模型微调框架LLaMA-Factory
2025-04-23
Unsloth:提升 LLM 微调效率的革命性开源工具
2025-04-23
超越 DevOps?VibeOps 引领 AI 驱动的开发革命
2025-04-23
大模型想 “专精” 特定任务?这 3 种 Addition-Based 微调法别错过
2025-04-23
重参数化微调:揭秘LoRA家族让大模型训练成本暴降的方法
2025-04-23
为什么全参数微调能让大模型从“通才”变“专才”?
2025-02-04
2025-02-04
2024-09-18
2024-07-11
2024-07-09
2024-07-11
2024-07-26
2025-02-05
2025-01-27
2025-02-01
2025-04-23
2025-04-20
2025-04-01
2025-03-31
2025-03-20
2025-03-16
2025-03-16
2025-03-13