微信扫码
与创始人交个朋友
我要投稿
为了帮助大家更好地理解和应用书生系列大模型,“玩转书生大模型”将推出一系列围绕书生大模型微调、部署、评测和应用的文章。欢迎大家订阅并积极投稿,一起分享经验与成果,推动大模型技术的普及与进步。
本文来自社区用户投稿,作者:「国产化硬件」微调部署兴趣小组 丁一超,将带领大家基于 ModelArts,使用 XTuner 在昇腾 910B 上单卡微调一个 InternLM 个人小助手。
InternLM 开源链接:(文末点击阅读原文可直达)
https://github.com/InternLM/InternLM
XTuner 开源链接:
https://github.com/InternLM/xtuner
xtuner help
xtuner version
xtuner list-cfg
xtuner list-cfg -p $NAME
xtuner copy-cfg $CONFIG $SAVE_PATH
xtuner train $CONFIG
xtuner convert pth_to_hf $CONFIG $PATH_TO_PTH_MODEL $SAVE_PATH_TO_HF_MODEL
pip install einopspip install acceleratepip install dlinfer-ascendpip install deepspeedpip install loguru
git clone -b v0.1.23 https://github.com/InternLM/xtunergit clone -b v0.1.23 https://gitee.com/InternLM/xtuner #github 不行的话用这条cd xtuner
parser.add_argument('--device',default='npu',choices=('cuda', 'cpu', 'auto','npu'),help='Indicate the device')# choices里面添加一个'npu',也可以把default直接改成npu
pip install -e .
mkdir -p /home/ma-user/work/work_dir/cd /home/ma-user/work/work_dir/
export HF_ENDPOINT=https://hf-mirror.com
huggingface-cli download --resume-download internlm/internlm2-chat-1_8b --local-dir /home/ma-user/work/model/internlm2-chat-1_8b
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name_or_path = "/home/ma-user/work/model/internlm2-chat-1_8b"# 模型所在的本地路径
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='npu')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='npu')
model = model.eval()
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""
messages = [(system_prompt, '')]
print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")
while True:
input_text = input("\nUser>>> ")
input_text = input_text.replace(' ', '')
if input_text == "exit":
break
length = 0
for response, _ in model.stream_chat(tokenizer, input_text, messages):
if response is not None:
print(response[length:], flush=True, end="")
length = len(response)
python cli_demo.py
cd /home/ma-user/work/work_dir/mkdir -p datastouch datas/assistant.json
vim xtuner_generate_assistant.py
import json
# 设置用户的名字
name = 'JeffDing同志'
# 设置需要重复添加的数据次数
n = 8000
# 初始化数据
data = [
{"conversation": [{"input": "请介绍一下你自己", "output": "我是{}的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦".format(name)}]},
{"conversation": [{"input": "你在实战营做什么", "output": "我在这里帮助{}完成XTuner微调个人小助手的任务".format(name)}]}
]
# 通过循环,将初始化的对话数据重复添加到data列表中
for i in range(n):
data.append(data[0])
data.append(data[1])
# 将data列表中的数据写入到'datas/assistant.json'文件中
with open('datas/assistant.json', 'w', encoding='utf-8') as f:
# 使用json.dump方法将数据以JSON格式写入文件
# ensure_ascii=False 确保中文字符正常显示
# indent=4 使得文件内容格式化,便于阅读
json.dump(data, f, ensure_ascii=False, indent=4)
- name = 'JeffDing同志'+ name = "你自己的名称"
python xtuner_generate_assistant.py
xtuner list-cfg -p internlm2
xtuner copy-cfg internlm2_chat_1_8b_qlora_alpaca_e3 .
########################################################################PART 1Settings ########################################################################
- pretrained_model_name_or_path = 'internlm/internlm2-chat-1_8b'
+ pretrained_model_name_or_path = '/home/ma-user/work/model/internlm2-chat-1_8b'
- alpaca_en_path = 'tatsu-lab/alpaca'
+ alpaca_en_path = 'datas/assistant.json'
evaluation_inputs = [
-'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
+'请介绍一下你自己', 'Please introduce yourself']
########################################################################PART 3Dataset & Dataloader ########################################################################
alpaca_en = dict(type=process_hf_dataset,
- dataset=dict(type=load_dataset, path=alpaca_en_path),
+ dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)),
tokenizer=tokenizer,
max_length=max_length,
- dataset_map_fn=alpaca_map_fn,
+ dataset_map_fn=None,
template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length,
use_varlen_attn=use_varlen_attn)
#######################################################################
#PART 2Model & Tokenizer#
#######################################################################
- quantization_config=dict(
-type=BitsAndBytesConfig,
-load_in_4bit=True,
-load_in_8bit=False,
-llm_int8_threshold=6.0,
-llm_int8_has_fp16_weight=False,
-bnb_4bit_compute_dtype=torch.float16,
-bnb_4bit_use_double_quant=True,
-bnb_4bit_quant_type='nf4')
xtuner train ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py微调启动时 NPU 的使用情况,使用 npu-smi info 命令查看
pth_file=`ls -t ./work_dirs/internlm2_chat_1_8b_qlora_alpaca_e3_copy/*.pth | head -n 1`xtuner convert pth_to_hf ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py ${pth_file} ./hf
xtuner convert merge /home/ma-user/work/model/internlm2-chat-1_8b ./hf ./merged --max-shard-size 2GB --device npu
- model_name_or_path = "/home/ma-user/work/model/internlm2-chat-1_8b"# 模型所在的本地路径+ model_name_or_path = "/home/ma-user/work/work_dir/merged"# 模型所在的本地路径
python cli_demo.ppy
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-09-18
2024-07-11
2024-07-11
2024-07-26
2024-07-09
2024-06-11
2024-12-29
2024-10-20
2024-07-20
2024-07-12