微信扫码
添加专属顾问
我要投稿
在AI领域,小型模型如何逆袭?伯克利团队的DeepScaleR模型给出了答案! 核心内容: 1. 1.5B参数小模型如何超越大规模模型 2. DeepScaleR的创新训练方法:迭代式上下文扩展 3. 强化学习奖励机制的应用与效果
突破性成就:1.5B小模型挑战大模型
DeepScaleR的创新训练方法:循序渐进,逐步突破
卓越性能:超越o1-preview,挑战数学竞赛
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-24
自主构建MCP,轻松实现云端部署!
2025-04-24
大模型微调框架LLaMA-Factory
2025-04-23
Unsloth:提升 LLM 微调效率的革命性开源工具
2025-04-23
超越 DevOps?VibeOps 引领 AI 驱动的开发革命
2025-04-23
大模型想 “专精” 特定任务?这 3 种 Addition-Based 微调法别错过
2025-04-23
重参数化微调:揭秘LoRA家族让大模型训练成本暴降的方法
2025-04-23
为什么全参数微调能让大模型从“通才”变“专才”?
2025-04-22
使用 LLaMA-Factory 微调 llama3 模型
2025-02-04
2025-02-04
2024-09-18
2024-07-11
2024-07-09
2024-07-11
2024-07-26
2025-02-05
2025-01-27
2025-02-01
2025-04-23
2025-04-20
2025-04-01
2025-03-31
2025-03-20
2025-03-16
2025-03-16
2025-03-13