微信扫码
添加专属顾问
我要投稿
探索本地化部署大模型的实践与效果,深入了解Ollama蒸馏模型在单细胞注释中的应用表现。 核心内容: 1. 访问受限背景下的大模型本地化部署方式 2. Ollama蒸馏模型的下载、加载与单细胞注释测试方法 3. 本地化部署模型的性能对比与内存需求分析
01
背景
02
目的
03
方法
ollama run deepseek-r1:7b
# 调用本地模型之前运行:ollama serve
git clone https://github.com/Zhihao-Huang/scPioneercd scPioneerRscript ./result/annotation_locally_test.R
04
结果
05
总结
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-25
DeepSeek + Dify 企业级大模型私有化部署指南
2025-04-24
自主构建MCP,轻松实现云端部署!
2025-04-24
大模型微调框架LLaMA-Factory
2025-04-23
Unsloth:提升 LLM 微调效率的革命性开源工具
2025-04-23
超越 DevOps?VibeOps 引领 AI 驱动的开发革命
2025-04-23
大模型想 “专精” 特定任务?这 3 种 Addition-Based 微调法别错过
2025-04-23
重参数化微调:揭秘LoRA家族让大模型训练成本暴降的方法
2025-04-23
为什么全参数微调能让大模型从“通才”变“专才”?
2025-02-04
2025-02-04
2024-09-18
2024-07-11
2024-07-09
2024-07-11
2024-07-26
2025-02-05
2025-01-27
2025-02-01
2025-04-23
2025-04-20
2025-04-01
2025-03-31
2025-03-20
2025-03-16
2025-03-16
2025-03-13