支持私有云部署
AI知识库

53AI知识库

学习大模型的前沿技术与行业应用场景


在Ubuntu服务器4x2080ti(22G)上部署QwQ-32B + SGLang教程

发布日期:2025-03-21 05:47:10 浏览次数: 1632 来源:玩科技的舒
推荐语

深入了解SGLang框架在Ubuntu服务器上的部署技巧,掌握大型语言模型的高效运行方法。

核心内容:
1. SGLang框架的核心功能与优势
2. SGLang的安装步骤与环境配置
3. 在Ubuntu服务器上部署QwQ-32B模型的具体流程

杨芳贤
53A创始人/腾讯云(TVP)最具价值专家

在上一篇文章中,我们谈到了如何用vLLM推理框架来运行QwQ-32B模型,想了解详情的可以参考《在Ubuntu服务器4x2080ti(22G)上部署QwQ-32B + vLLM教程》这篇文章!您也可以百度搜索“草凡博客”,阅读更多关于AI的技术文章!

本篇我们将来谈一谈另外一个比较新的推理框架——SGLang

SGLang 是适用于大型语言模型和视觉语言模型的快速服务框架。它通过共同设计后端运行时和前端语言,使您与模型的交互更快、更可控。核心功能包括:

  • 快速后端运行时:使用 RadixAttention 为前缀缓存、向前跳转约束解码、无开销 CPU 调度程序、连续批处理、标记注意力(分页注意力)、张量并行性、FlashInfer 内核、分块预填充和量化 (FP8/INT4/AWQ/GPTQ) 提供高效服务。

  • 灵活的前端语言:为编程LLM应用程序提供直观的界面,包括链式生成调用、高级提示、控制流、多模态输入、并行性和外部交互。

  • 广泛的模型支持:支持广泛的生成模型(Llama、Gemma、Mistral、QWen、DeepSeek、LLaVA 等)、嵌入模型(e5-mistral、gte、mcdse)和奖励模型 (Skywork),并易于扩展以集成新模型。

  • 活跃的社区:SGLang 是开源的,并得到行业采用的活跃社区的支持。


安装SGLang

新建和激活虚拟环境

conda create -n sglang python=3.10 -y && conda activate sglang

在Ubuntu服务器4x2080ti(22G)上部署QwQ-32B + SGLang教程

更新pip

pip install --upgrade pip

在Ubuntu服务器4x2080ti(22G)上部署QwQ-32B + SGLang教程

安装flashinfer

本来通过后面的一条命令也可以一起安装flashinfer,但是速度会比较慢,所以我将这条命令单独拎出来,通过“https://github.1319lm.top”代理网址来安装,国内安装速度会更快!

pip install https://github.1319lm.top/flashinfer-ai/flashinfer/releases/download/v0.2.3/flashinfer_python-0.2.3%2Bcu124torch2.5-cp38-abi3-linux_x86_64.whl

安装SGLang

pip install "sglang[all]>=0.4.3.post4" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn

运行SGLang+QwQ-32B

下载QwQ-32B模型的方法和步骤,参考《在Ubuntu服务器4x2080ti(22G)上部署QwQ-32B + vLLM教程》这篇文章,这里不再赘述!
假如您的模型已经下载到服务器了,并且路径是“/mnt/disk1/LLM/QwQ-32B”,我们可以运行下面的命令运行SGLang来对QwQ-32B进行推理服务
python3 -m sglang.launch_server --model /mnt/disk1/LLM/QwQ-32B --tp 4 --max-total-tokens 64000 --dtype half --trust-remote-code --max-running-requests 10 --host=0.0.0.0 --port=4000

启动的过程会有点慢,大概需要数分钟!下图所示为加载模型的过程!

启动成功之后你会看到一个0.0.0.0的带端口的IP地址,这个就是后端的服务地址!

启动成功之后,跟vLLM一样,我们可以通过oneapi分发兼容openai的api,再接入到其他的类似open-webui的前端程序中!

优化后的命令


适配2080Ti22G*4

下面是完整模型在4张2080Ti22G的启动参数配置命令

python3 -m sglang.launch_server \   --model-path /mnt/disk1/LLM/QwQ-32B \   --host 0.0.0.0 \   --port 4000 \  --dtype half \  --trust-remote-code \  --tp 4 \  --max-total-tokens 96000 \  --max-running-requests 6 \  --mem-fraction-static 0.9 \  --max-prefill-tokens 16384 \  --chunked-prefill-size 4096 \  --schedule-policy lpm \  --attention-backend flashinfer \  --stream-output \  --device cuda \  --kv-cache-dtype auto \  --stream-interval 2 \  --disable-cuda-graph-padding \  --enable-metrics \  --warmups 3 \  --triton-attention-num-kv-splits 4 \  --reasoning-parser deepseek-r1

53AI,企业落地大模型首选服务商

产品:场景落地咨询+大模型应用平台+行业解决方案

承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业

联系我们

售前咨询
186 6662 7370
预约演示
185 8882 0121

微信扫码

添加专属顾问

回到顶部

加载中...

扫码咨询