微信扫码
添加专属顾问
我要投稿
微调大模型,解锁机器学习的无限潜能。 核心内容: 1. 微调技术及其在提升模型特定任务性能中的重要性 2. 微调的常见方法与各自特点,包括全参数微调和参数高效微调 3. 基于Qwen2.5的微调案例,从数据准备到环境配置的详细步骤
微调(Fine-tuning)是机器学习中的迁移学习技术,指在大规模预训练模型(如Qwen2.5)基础上,使用特定任务的数据进行进一步训练,使模型适应新任务或领域。其核心目的是复用预训练模型的通用知识,同时通过少量数据调整模型参数以优化特定场景的表现。
例如,Qwen2.5作为通用大模型可能无法直接处理医疗领域的专业术语,通过微调可使其掌握医疗报告生成能力,成为医生的智能助手。
微调的必要性:
常见问题与优化
gradient_checkpointing=True
)或使用QLoRA(4-bit量化);通过上述步骤,可在2-4小时内完成Qwen2.5的微调,构建高精度的垂直领域应用
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-03
Ray 在 Bilibili 的场景探索与落地实践
2025-04-03
Spring AI+DeepSeek R1搭建企业私有化模型工具(直接使用)
2025-04-02
一文看懂预训练、微调和上下文学习
2025-04-02
将复杂HTML变成AI易读Markdown | MCP精选集
2025-04-02
我让DeepSeek设计了一个智能运维平台 -- 如何做数据准备和模型训练
2025-04-01
Cursor是越来越难用了!逼着我写mdc文档比代码还多
2025-04-01
Docker部署Dify+RAGFlow避坑指南
2025-04-01
大型语言模型如何高效微调量化?答案就是 QLoRA!
2025-02-04
2025-02-04
2024-09-18
2024-07-11
2024-07-09
2024-07-11
2024-07-26
2025-02-05
2025-01-27
2025-02-01
2025-04-01
2025-03-31
2025-03-20
2025-03-16
2025-03-16
2025-03-13
2025-03-13
2025-03-11