微信扫码
添加专属顾问
我要投稿
掌握AI与应用融合的全新方案,MCP服务端客户端的完整实现指南。 核心内容: 1. MCP协议如何标准化AI模型与应用的连接 2. 常见MCP服务器及其功能解析 3. 快速开发MCP Server的详细步骤与代码示例
试想一下,如果要想在现有应用上构建,让AI读取引用我们功能和数据,该怎么办,比如询问某个城市的天气,我们希望AI能调用天气函数返回相应结果,这时MCP (Model Context Protocol)就可以派上用场了,它相当于我们电脑的USB-C接口,提供了一个标准方式让AI模型连接不同的引用和工具。 我们可以建一个MUP Server来处理这类业务,比如市面上已有各类MUP Server,比较典型的高德地图MCP,除此之外,还有旅行交通的 AirbnbMCPServer
,提供房源问询,版本控制的 gitlab-mr-mcp
,工具类mcp-openai,开发类 mcp-server-and-gw
等,更多工具可查看:https://github.com/punkpeye/awesome-mcp-servers/blob/main/README-zh.md#%E6%9C%8D%E5%8A%A1%E5%99%A8%E5%AE%9E%E7%8E%B0
MCP 服务器的职能变得非常容易理解:即遵循 MCP 协议来暴露其可提供的 Resources、Tools 或 Prompts:
MCP与Function Caling的区别:
使用Python为例。
windows:powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"linux/mac:curl -LsSf https://astral.sh/uv/install.sh | sh
pip install mcppip install mcp[cli]pip install httpx==0.27
import osfrom mcp.server.fastmcp import FastMCPmcp = FastMCP("债券服务Demo")@mcp.tool()def filterByRate(a:str) -> list: """根据债券评级的条件筛选债券""" print('债券评级过滤条件:',a) return ["债券A","债券B","债券C"]@mcp.tool()def filterByType(t:str) -> list: """根据债券类型的条件筛选债券""" print('债券类型过滤条件:',t) return ["债券A","债券C","债券D"]@mcp.tool()def filterByBidRange(a1:float,a2:float) -> list: """根据债券bid收益率区间筛选债券""" print('债券类型过滤条件:',a1,a2) return ["债券A2","债券C2","债券D2"]@mcp.tool()def filterResult(**kwargs) -> list: """获取所有符合条件的债券结果""" print('filterResult:',kwargs) return ["债券A111","债券C222","债券D3333"]if __name__ == "__main__": # mcp.run(transport='stdio') mcp.run(transport='sse')
mcp dev.\mcp\hello.py
以 CherryStudio
为例,其他类型,添加一个: MCPServer
,问答时选中MCP Server即可.
程序集成:编写一个客户端程序即可,我们以本地Ollama部署的qwen为例,代码如下:
client_mcp.pyimport asyncioimport jsonimport sysimport timefrom typing import Optionalfrom contextlib import AsyncExitStackfrom mcp.client.sse import sse_clientfrom mcp import ClientSession, StdioServerParametersfrom mcp.client.stdio import stdio_clientfrom openai import AsyncOpenAIclass MCPClient: def __init__(self): # Initialize session and client objects self.session: Optional[ClientSession] = None self.exit_stack = AsyncExitStack() self.client = AsyncOpenAI( api_key="test", base_url="http://ollama地址:11434/v1" ) async def connect_to_server(self, server_script_path: str): """Connect to an MCP server Args: server_script_path: Path to the server script (.py or .js) """ is_python = server_script_path.endswith(".py") is_js = server_script_path.endswith(".js") if not (is_python or is_js): raise ValueError("Server script must be a .py or .js file") command = "python" if is_python else "node" server_params = StdioServerParameters( command=command, args=[server_script_path], env=None ) stdio_transport = await self.exit_stack.enter_async_context( stdio_client(server_params) ) self.stdio, self.write = stdio_transport self.session = await self.exit_stack.enter_async_context( ClientSession(self.stdio, self.write) ) await self.session.initialize() # List available tools response = await self.session.list_tools() tools = response.tools print("\nConnected to server with tools:", [tool.name for tool in tools]) async def connect_to_sse_server(self, server_url: str): """Connect to an MCP server Args: server_script_path: Path to the server script (.py or .js) """ self._streams_context = sse_client(url=server_url) streams = await self._streams_context.__aenter__() self._session_context = ClientSession(*streams) self.session = await self._session_context.__aenter__() await self.session.initialize() # List available tools response = await self.session.list_tools() tools = response.tools print("\nConnected to server with tools:", [tool.name for tool in tools]) async def process_query(self, query: str) -> str: """使用 LLM 和 MCP 服务器提供的工具处理查询""" messages = [ { "role": "user", "content": query } ] response = await self.session.list_tools() available_tools = [{ "type": "function", "function": { "name": tool.name, "description": tool.description, "parameters": tool.inputSchema } } for tool in response.tools] # 初始化 LLM API 调用 response = await self.client.chat.completions.create( model="qwen2.5:14b", messages=messages, tools=available_tools # 将工具列表传递给 LLM ) final_text = [] message = response.choices[0].message print(response.choices[0]) final_text.append(message.content or "") # 处理响应并处理工具调用 if message.tool_calls: # 处理每个工具调用 for tool_call in message.tool_calls: tool_name = tool_call.function.name tool_args = json.loads(tool_call.function.arguments) # 执行工具调用 start_time = time.time() result = await self.session.call_tool(tool_name, tool_args) end_time = time.time() print(f"Tool {tool_name} took {end_time - start_time} seconds to execute") final_text.append(f"[Calling tool {tool_name} with args {tool_args}]") # 将工具调用和结果添加到消息历史 messages.append({ "role": "assistant", "tool_calls": [ { "id": tool_call.id, "type": "function", "function": { "name": tool_name, "arguments": json.dumps(tool_args) } } ] }) messages.append({ "role": "tool", "tool_call_id": tool_call.id, "content": str(result.content) }) # 将工具调用的结果交给 LLM response = await self.client.chat.completions.create( model="qwen2.5:14b", messages=messages, tools=available_tools ) message = response.choices[0].message if message.content: final_text.append(message.content) return "\n".join(final_text) async def chat_loop(self): """Run an interactive chat loop""" print("\nMCP Client Started!") print("Type your queries or 'quit' to exit.") while True: try: query = input("\nQuery: ").strip() if query.lower() == 'quit': break response = await self.process_query(query) print("\n" + response) except Exception as e: print(f"\nError: {str(e)}") async def cleanup(self): """Clean up resources""" await self.exit_stack.aclose()main.pyimport requestsimport jsonimport httpximport asynciofrom client_mcp import MCPClientimport sysasync def main(): url_server_mcp = 'http://localhost:8000/sse' client = MCPClient() try: # 根据MCP Server传输协议进行选择 await client.connect_to_sse_server(url_server_mcp) await client.chat_loop() finally: await client.cleanup()if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-19
LoRA 与QLoRA区别
2025-04-18
DeepSeek-V3-0324 本地部署,vLLM和SGLang的方法
2025-04-18
Ollama对决vLLM:DEEPSEEK部署神器选谁?90%人选错!这份实测攻略让你秒懂!
2025-04-18
ollama v0.6.6 震撼发布!推理能力翻倍、下载提速 50%,对比 vLLM/LMDeploy 谁更强
2025-04-17
从零开始开发 MCP Server
2025-04-17
AI 应用开发不要在大模型迭代必经之路上
2025-04-17
阿里百炼出手了!MCP 现在配置门槛下降了 100 倍
2025-04-17
突发!OpenAI推出API组织验证:不验证就不让用最新模型
2025-02-04
2025-02-04
2024-09-18
2024-07-11
2024-07-09
2024-07-11
2024-07-26
2025-02-05
2025-01-27
2025-02-01
2025-04-01
2025-03-31
2025-03-20
2025-03-16
2025-03-16
2025-03-13
2025-03-13
2025-03-11