AI知识库

53AI知识库

学习大模型的前沿技术与行业应用场景


graphrag火了,但是graph部分似乎有待提高,这里有个保姆教程,专业提取konwledge
发布日期:2024-07-31 08:05:42 浏览次数: 2100 来源:世界大模型


     大模型带火了太多项目了,最近大火的graphrag,各个关键环节都离不开llm,但是至于效果怎样,就有待商榷了,就拿最近的graphrag的知识图谱的部分,他的提取方式还是靠大模型的pompt设计能力,我测试了一些文本,从知识图谱提取方面看,效果确实有待提高。或许大家都忘了,在大模型出来之前,称霸nlp界的是bert,这次给大家分享一个专门做知识图谱提取的方式,使用bert的关系抽取,废话不多说,上干货。

工具

本次使用 bert做关系抽取,使用的python包是 bert4keras,当然还有一个bert4torch,如果大家有基础可以直接去github搜这两个项目,去学习一下,预训练模型,使用的 chinese_L-12_H-768_A-12,这个是谷歌开源的bert预训练权重,本次是基于这个权重微调,当然bert的权重有很多,也有比这个好的,大家可以自行尝试

数据

数据使用的之前的竞赛的数据,具体忘了,哈哈,数据提供了两部分,一个是关系说明数据

{"event_type": "财经/交易-出售/收购", "role_list": [{"role": "时间"}, {"role": "出售方"}, {"role": "交易物"}, {"role": "出售价格"}, {"role": "收购方"}], "id": "804336473abe8b8124d00876a5387151", "class": "财经/交易"}{"event_type": "财经/交易-跌停", "role_list": [{"role": "时间"}, {"role": "跌停股票"}], "id": "29a8f7417bf8867ddb8521f647a828d8", "class": "财经/交易"}

event_type 是关系类型,其他的是要提取的实体类型

训练数据

{"text": "雀巢裁员4000人:时代抛弃你时,连招呼都不会打!", "id": "409389c96efe78d6af1c86e0450fd2d7", "event_list": [{"event_type": "组织关系-裁员", "trigger": "裁员", "trigger_start_index": 2, "arguments": [{"argument_start_index": 0, "role": "裁员方", "argument": "雀巢", "alias": []}, {"argument_start_index": 4, "role": "裁员人数", "argument": "4000人", "alias": []}], "class": "组织关系"}]}{"text": "美国“未来为”子公司大幅度裁员,这是为什么呢?任正非正式回应", "id": "5aec2b5b759c5f8f42f9c0156eb3c924", "event_list": [{"event_type": "组织关系-裁员", "trigger": "裁员", "trigger_start_index": 13, "arguments": [{"argument_start_index": 0, "role": "裁员方", "argument": "美国“未来为”子公司", "alias": []}], "class": "组织关系"}]}

数据包含,要抽取关系的文本,以及抽取到的实体

数据分成训练、测试、验证三份数据,我会给到大家

具体代码

代码算是比价简洁的了,整体代码在文末,这里分开简单讲解一下

训练代码

加载训练用的包和预训练模型,以及一些训练参数

#! -*- coding: utf-8 -*-
import jsonimport numpy as npfrom bert4keras.backend import keras, K, search_layerfrom bert4keras.models import build_transformer_modelfrom bert4keras.tokenizers import Tokenizerfrom bert4keras.optimizers import Adamfrom bert4keras.snippets import sequence_padding, DataGeneratorfrom bert4keras.snippets import openfrom bert4keras.layers import ConditionalRandomFieldfrom keras.layers import Densefrom keras.models import Modelfrom tqdm import tqdmimport pylcsfrom keras.layers import Input, Dense, Embedding, LSTM, Bidirectional,GRUfrom keras.optimizers import Optimizerfrom tensorflow.keras.callbacks import LearningRateSchedulerimport tensorflow as tfimport osos.environ["CUDA_VISIBLE_DEVICES"] = "0"os.environ['TF_AUTO_MIXED_PRECISION_GRAPH_REWRITE_IGNORE_PERFORMANCE'] = '1'# 基本信息train=True #参数为True代表训练 参数为False代表为预测maxlen = 220epochs = 10batch_size = 16learning_rate = 1e-5crf_lr_multiplier = 100# 必要时扩大CRF层的学习率model_save='best_model_v4.weights'#最好的成绩是模型2# bert配置config_path = 'data/chinese_L-12_H-768_A-12/bert_config.json'checkpoint_path = 'data/chinese_L-12_H-768_A-12/bert_model.ckpt'dict_path = 'data/chinese_L-12_H-768_A-12/vocab.txt'

加载训练数据

def load_data(filename):D = []with open(filename) as f:for l in f:l = json.loads(l)arguments = {}for event in l['event_list']:for argument in event['arguments']:key = argument['argument']value = (event['event_type'], argument['role'])arguments[key] = valueD.append((l['text'], arguments))print(D)return D

# 读取数据train_data = load_data('data/duee_train.json')valid_data = load_data('data/duee_dev.json')
# 读取schemawith open('data/duee_event_schema.json') as f:id2label, label2id, n = {}, {}, 0for l in f:l = json.loads(l)for role in l['role_list']:key = (l['event_type'], role['role'])id2label[n] = keylabel2id[key] = nn += 1num_labels = len(id2label) * 2 + 1
# 建立分词器tokenizer = Tokenizer(dict_path, do_lower_case=True)

构造数据生成器,给bert喂训练数据


def search(pattern, sequence):"""从sequence中寻找子串pattern如果找到,返回第一个下标;否则返回-1。"""n = len(pattern)for i in range(len(sequence)):if sequence[i:i + n] == pattern:return ireturn -1

class data_generator(DataGenerator):"""数据生成器"""def __iter__(self, random=False):batch_token_ids, batch_segment_ids, batch_labels = [], [], []for is_end, (text, arguments) in self.sample(random):token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)labels = [0] * len(token_ids)for argument in arguments.items():a_token_ids = tokenizer.encode(argument[0])[0][1:-1]start_index = search(a_token_ids, token_ids)if start_index != -1:labels[start_index] = label2id[argument[1]] * 2 + 1for i in range(1, len(a_token_ids)):labels[start_index + i] = label2id[argument[1]] * 2 + 2batch_token_ids.append(token_ids)batch_segment_ids.append(segment_ids)batch_labels.append(labels)#print(batch_labels)if len(batch_token_ids) == self.batch_size or is_end:batch_token_ids = sequence_padding(batch_token_ids)batch_segment_ids = sequence_padding(batch_segment_ids)batch_labels = sequence_padding(batch_labels)yield [batch_token_ids, batch_segment_ids], batch_labelsbatch_token_ids, batch_segment_ids, batch_labels = [], [], []

构造模型结构


model = build_transformer_model(config_path,checkpoint_path,model='bert')#lstm_output = Bidirectional(LSTM(num_labels//2, dropout=0.2, return_sequences=True))(model.output)output = Dense(num_labels)(model.output)CRF = ConditionalRandomField(lr_multiplier=crf_lr_multiplier)output = CRF(output)
model = Model(model.input, output)model.summary()opt =Adam(learning_rate)#AccumOptimizer(Adam(learning_rate), 5) # 10是累积步数#opt = tf.keras.optimizers.Adam(learning_rate)#opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(#opt,#loss_scale='dynamic')model.compile(loss=CRF.sparse_loss,optimizer=opt,metrics=[CRF.sparse_accuracy])

解码 训练后的结果


def viterbi_decode(nodes, trans):"""Viterbi算法求最优路径其中nodes.shape=[seq_len, num_labels],trans.shape=[num_labels, num_labels]."""labels = np.arange(num_labels).reshape((1, -1))scores = nodes[0].reshape((-1, 1))scores[1:] -= np.inf# 第一个标签必然是0paths = labelsfor l in range(1, len(nodes)):M = scores + trans + nodes[l].reshape((1, -1))idxs = M.argmax(0)scores = M.max(0).reshape((-1, 1))paths = np.concatenate([paths[:, idxs], labels], 0)return paths[:, scores[:, 0].argmax()]

def extract_arguments(text):"""arguments抽取函数"""tokens = tokenizer.tokenize(text)while len(tokens) > 510:tokens.pop(-2)mapping = tokenizer.rematch(text, tokens)token_ids = tokenizer.tokens_to_ids(tokens)segment_ids = [0] * len(token_ids)nodes = model.predict([[token_ids], [segment_ids]])[0]trans = K.eval(CRF.trans)labels = viterbi_decode(nodes, trans)arguments, starting = [], Falsefor i, label in enumerate(labels):if label > 0:if label % 2 == 1:starting = Truearguments.append([[i], id2label[(label - 1) // 2]])elif starting:arguments[-1][0].append(i)else:starting = Falseelse:starting = False
return {text[mapping[w[0]][0]:mapping[w[-1]][-1] + 1]: lfor w, l in arguments}

验证指标的函数


def evaluate(data):"""评测函数(跟官方评测结果不一定相同,但很接近)"""X, Y, Z = 1e-10, 1e-10, 1e-10for text, arguments in tqdm(data):inv_arguments = {v: k for k, v in arguments.items()}pred_arguments = extract_arguments(text)pred_inv_arguments = {v: k for k, v in pred_arguments.items()}Y += len(pred_inv_arguments)Z += len(inv_arguments)for k, v in pred_inv_arguments.items():if k in inv_arguments:# 用最长公共子串作为匹配程度度量l = pylcs.lcs(v, inv_arguments[k])X += 2. * l / (len(v) + len(inv_arguments[k]))f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Zreturn f1, precision, recall

预测文件输出


def predict_to_file(in_file, out_file):"""预测结果到文件,方便提交"""fw = open(out_file, 'w', encoding='utf-8')with open("/home/maxin/baidu_data/baidu_ee/event_schema.json", 'r', encoding='UTF-8') as x:event_dict = json.load(x)x.close()with open(in_file) as fr:for l in tqdm(fr):l = json.loads(l)arguments = extract_arguments(l['text'])event_list = []for k, v in arguments.items():event_list.append({'event_type': v[0],'trigger':v[0].split('-')[-1],'trigger_start_index':0,'arguments': [{'argument_start_index':0,'role': v[1],'argument': k,'class':event_dict.get(v[0])}]})l['event_list'] = event_listl = json.dumps(l, ensure_ascii=False)fw.write(l + '\n')fw.close()

class Evaluator(keras.callbacks.Callback):"""评估和保存模型"""def __init__(self):self.best_val_f1 = 0.
def on_epoch_end(self, epoch, logs=None):f1, precision, recall = evaluate(valid_data)if f1 >= self.best_val_f1:self.best_val_f1 = f1model.save_weights(model_save)print('f1: %.5f, precision: %.5f, recall: %.5f, best f1: %.5f\n' %(f1, precision, recall, self.best_val_f1))


53AI,企业落地应用大模型首选服务商

产品:大模型应用平台+智能体定制开发+落地咨询服务

承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业

联系我们

售前咨询
186 6662 7370
预约演示
185 8882 0121

微信扫码

与创始人交个朋友

回到顶部

 
扫码咨询