微信扫码
添加专属顾问
我要投稿
知识图谱按照逻辑结构可以划分为数据层和模式层两部分。数据层包含的是大量由基本事实组成的信息,这些事实通常以三元组的形式存在,例如"实体-关系-实体"或"实体-属性-属性值",这样的数据结构一般以图数据库的形式存储。模式层则进一步抽象,它代表着数据组织的模式,是在数据层之上对知识进行提炼和概括的层面,通常通过本体库来管理和组织这些数据。
1.信息提取
信息抽取是一个多维度的过程,它根据任务需求的不同而有所区别。例如,在情感和舆论分析任务中,重点在于抽取事件和情感信息,而在知识图谱的应用中,则更侧重于实体、关系和属性等信息的抽取。在知识图谱中,实体的属性,比如城市的人口数量和地理位置,是其固有属性的一部分。无论是实体、关系的抽取还是属性的抽取,都可以采用监督、半监督或无监督的方法进行。信息抽取主要处理的是半结构化和非结构化数据,通过这一过程,原本非结构化的数据可以转化为结构化数据,为知识图谱系统所用。
2.知识融合
整体-部分关系,通过"Part-of"来表达。
概念间的继承关系,通过"Kind-of"来表达。
概念和实例之间的关系,通过"Instance-of"来表达。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-21
DeepSeek V3.2 AI辅助-构建可视化多维知识立方体展示知识体系
2025-10-19
文档级知识图谱: RAKG(95.91%) VS GraphRAG(89.71%)
2025-10-13
用 AI 重塑阅读体验,将任何书籍转化为可交互的知识图谱
2025-09-29
Spring AI Alibaba Graph升级至1.0.0.4,流式输出演进说明
2025-09-20
AI赋能—大模型搭建知识库
2025-09-17
怎么使用Graph Maker 将文本转换为知识图谱
2025-09-03
向量检索快比LLM还贵?不支持S3的向量数据库,迟早要淘汰!
2025-09-02
知识图谱常用的8款可视化提效神器
2025-09-02
2025-08-26
2025-08-28
2025-08-24
2025-08-10
2025-08-30
2025-07-29
2025-08-28
2025-07-28
2025-08-25