微信扫码
与创始人交个朋友
我要投稿
在当今数据驱动的世界中,组织机构们坐拥着无数的PDF文档,这些文档中蕴含着丰富的信息宝藏。然而,尽管人类可以轻易地阅读这些文件,但对于试图理解和利用其内容的机器来说,却构成了巨大的挑战。无论是研究论文、技术手册还是商业报告,PDF文件常常包含能够驱动智能系统、助力数据驱动决策的有价值知识。但如何将这些非结构化的PDF数据转化为机器能够高效处理的结构化知识,成为了现代信息处理系统面临的核心挑战之一。
尽管PDF文档中的信息丰富多样,但面对非结构化数据时,三大核心挑战应运而生:
缺乏可解释性:难以追踪系统是如何得出特定答案的。
分析能力受限:非结构化数据限制了复杂分析的可能性。
精度降低:在处理大量信息时,这一点尤为明显。
这些限制凸显了结构化格式(如表格和知识图谱)(GraphRAG原理深入剖析-知识图谱构建)的强大之处。它们能够将原始信息转化为有组织、可查询的数据,从而使机器能够更有效地处理。为了将非结构化文档与结构化数据之间的鸿沟缩小,以便进行高级分析和AI应用,我们必须采取创新的手段。这不仅是现代信息处理系统的核心挑战,也是构建综合性知识图谱的重要目标。
将PDF内容转化为知识图谱的过程,不仅仅是简单的文本提取,而是需要理解上下文、识别关键概念以及识别思想之间的关系。这要求我们首先解析PDF内容。
在众多可用的解析库中,本文选择了PyMuPDF及其扩展PyMuPDF4LLM。PyMuPDF4LLM的Markdown提取功能保留了诸如标题和列表等关键结构元素,这极大地提升了大型语言模型(LLMs)对文档结构的识别和解释能力,从而显著增强了检索增强生成(Retrieval-Augmented Generation, RAG)的结果。
在解析PDF时,我使用PyMuPDF4LLM生成的Markdown作为每页文档的文本内容,同时提取所有图像,并将它们的OCR输出附加到相同的Markdown输出中。这种方法能够自动处理不同类型的PDF:仅有图像的扫描PDF、包含文本的PDF以及同时包含图像和文本的PDF。
对于图像中的文本提取,我们使用了PyTesseract,它是Google Tesseract-OCR引擎的Python封装。
import base64
from typing import Union, List, Dict, Any
import pymupdf
import pymupdf4llm
import numpy as np
from PIL import Image
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import SystemMessage, HumanMessage
def ocr_images_pytesseract(images: List[Union[np.ndarray | Image.Image]]) -> str:
import pytesseract
all_text: str = ""
for image in images:
if isinstance(image, Image.Image):
image = image.filter(ImageFilter.SMOOTH())
all_text += '\n' +pytesseract.image_to_string(image, lang="eng", config='--psm 3 --dpi 300 --oem 1')
return all_text.strip('\n \t')
# Use PyMuPDF to open the document and PyMuPDF4LLM to get the markdown output
doc = pymupdf.Document(pdf_path)
doc_markdown = pymupdf4llm.to_markdown(doc, page_chunks=True, write_images=False, force_text=True)
def extract_page_info(page_num: int, doc_metadata: dict, toc: list = None) -> Dict[str, Any]:
"""Extracts text and metadata from a single page of a PDF document.
Args:
page_num (int): The page number
doc_metadata (dict): The whole document metadata to store along with each page metadata
toc (list | None): The list that represents the table-of-contents of the document
Returns:
A dictionary with the following keys:
1) text: Text content extracted from the page
2) page_metadata: Metadata specific to the page only like page number, chapter number etc.
3) doc_metadata: Metadata common to the whole document like filename, author etc.
"""
page_info = {}
# Read the page of
page = doc[page_num]
# doc_markdown stores the page-by-page markdown output of the document
text_content: str = self.doc_markdown[page_num]['text']
# Get a list of all the images on this page - automatically, perform OCR on all these images and store the output as page text
# There are 3 options available: each with different preprocessing steps and all of them implemented in the self._ocr_func method
images_list: list[list] = page.get_images()
if len(images_list) > 0:
imgs = []
for img in images_list:
xref = img[0]
pix = pymupdf.Pixmap(doc, xref)
# using PyTesseract requires storing the image as PIL.Image though it could've been bytes or np.ndarray as well
cspace = pix.colorspace
if cspace is None:
mode: str = "L"
elif cspace.n == 1:
mode = "L" if pix.alpha == 0 else "LA"
elif cspace.n == 3:
mode = "RGB" if pix.alpha == 0 else "RGBA"
else:
mode = "CMYK"
img = Image.frombytes(mode, (pix.width, pix.height), pix.samples)
if mode != "L":
img = img.convert("L")
imgs.append(img)
text_content += '\n' + ocr_images_pytesseract(imgs)
text_content = text_content.strip(' \n\t')
page_info["text"] = text_content
page_info["page_metadata"] = get_page_metadata(page_num=page_num+1, page_text=text_content, toc=toc)
page_info["doc_metadata"] = doc_metadata
return page_info
在提取PDF中的结构化内容之前,我们首先需要定义输出结构。这通常通过现代LLMs提供的“结构化输出”功能来实现。本文使用了LangChain来处理与LLMs相关的所有流程,并使用了其with_structured_output方法。需要注意的是,此方法并非所有模型都支持,因此在使用前需确认模型兼容性。
知识图谱架构(GraphRAG原理深入剖析-知识图谱构建)由两个主要组件构成:节点和关系。使用Pydantic库定义了节点和关系的模型。
节点类:定义了单个实体,包括唯一标识符、实体类型、附加属性(可选)、别名(可选)以及文本定义(可选)。虽然别名和定义是可选的,但它们在后续处理步骤中至关重要,它们有助于:
在后续处理步骤中进行节点消歧。
指导LLMs保持一致性,防止重复创建节点。
丰富知识图谱,提供有价值的上下文,提升RAG性能。
关系类:捕获节点之间的连接,包括源和目标节点ID、关系类型、属性(可选)以及提取上下文(可选)。与节点别名和定义类似,关系上下文保留了关于连接如何和在哪里被识别的有价值信息,提高了图谱对下游任务的实用性。
from pydantic import BaseModel, Field
class Property(BaseModel):
"""A single property consisting of key and value"""
key: str = Field(..., description="key")
value: str = Field(..., description="value")
class Node(BaseModel):
id: str = Field(..., description="The identifying property of the node in Title Case")
type: str = Field(..., description="The entity type / label of the node in PascalCase.")
properties: Optional[List[Property]] = Field(default=[], description="Detailed properties of the node")
aliases: List[str] = Field(default=[], description="Alternative names or identifiers for the entity in Title Case")
definition: Optional[str] = Field(None, description="A concise definition or description of the entity")
class Relationship(BaseModel):
start_node_id: str = Field(..., description="The id of the first node in the relationship")
end_node_id: str = Field(..., description="The id of the second node in the relationship")
type: str = Field(..., description="TThe specific, descriptive label of the relationship in SCREAMING_SNAKE_CASE")
properties: List[Property] = Field(default=[], description="Detailed properties of the relationship")
context: Optional[str] = Field(None, description="Additional contextual information about the relationship")
class KnowledgeGraph(BaseModel):
"""Generate a knowledge graph with entities and relationships."""
nodes: list[Node] = Field(
..., description="List of nodes in the knowledge graph")
rels: list[Relationship] = Field(
..., description="List of relationships in the knowledge graph"
)
接下来,我们定义了详细的提取提示,包括:
最终目标:构建具有丰富上下文信息的知识图谱。
节点ID、节点类型和关系类型的输出格式。
保持节点一致性并解决指代消解至其最完整形式。
利用这个提示和结构化架构,创建了一个数据提取链,该链将在后续步骤中用于从文本中提取知识图谱。
from langchain_core.prompts import ChatPromptTemplate
DATA_EXTRACTION_SYSTEM = """# Knowledge Graph Extraction for Rich Information Retrieval
## 1. Overview
You are an advanced algorithm designed to extract knowledge from various types of informational content. \
Your task is to build a knowledge graph that provides rich, contextual information for downstream tasks.
## 2. Content Focus
- Extract detailed information about concepts, entities, processes, and their relationships from the given text.
- Prioritize information that provides rich context and is likely to be useful for answering a wide range of questions.
- Include relevant attributes, properties, and descriptive information for each extracted entity.
## 3. Node Extraction
- **Node IDs**: Use clear, unambiguous identifiers in Title Case. Avoid integers, abbreviations, and acronyms.
- **Node Types**: Use PascalCase. Be as specific and descriptive as possible to aid in Wikidata matching.
- Include all relevant attributes of the entity in the node properties.
- Extract and include alternative names or aliases for entities when present in the text.
## 4. Relationship Extraction
- Use SCREAMING_SNAKE_CASE for relationship types.
- Create detailed, informative relationship types that clearly describe the nature of the connection.
- Include directional relationships where applicable (e.g., PRECEDED_BY, FOLLOWED_BY instead of just RELATED_TO).
## 5. Contextual Information
- For each node and relationship, strive to capture contextual information that might be useful for answering questions.
- Include temporal information when available (e.g., dates, time periods, sequence of events).
- Capture geographical or spatial information if relevant.
## 6. Handling Definitions and Descriptions
- For key concepts, include concise definitions or descriptions as node properties.
- Capture any notable characteristics, functions, or use cases of entities.
## 7. Coreference and Consistency
- Maintain consistent entity references throughout the graph.
- Resolve coreferences to their most complete form, including potential aliases or alternative names.
## 8. Granularity
- Strike a balance between detailed extraction and maintaining a coherent graph structure.
- Create separate nodes for distinct concepts, even if closely related.
"""
prompt = ChatPromptTemplate.from_messages(
[
("system", DATA_EXTRACTION_SYSTEM),
("human", "Use the given format to extract information from the following input which is a small sample from a much larger text belonging to the same subject matter: {input}"),
("human", "Tip: Make sure to answer in the correct format"),
])
四、节点和关系提取
(一)基本提取过程
给定一系列文档,使用上述模式和提示从文本中提取节点和关系。通过在每个文档上调用文档提取链,可以得到输出节点和关系的列表。
nodes = []
rels = []
for doc in docs:
output: KnowledgeGraph = data_ext_chain.invoke(
{
"input": doc.page_content
}
)
nodes.extend(format_nodes(output.nodes))
rels.extend(format_rels(output.rels))
(二)面临的挑战
节点类型增殖
没有对创建不同节点类型进行限制,导致结果图谱 “分散”,降低了对下游任务的有效性。
重复实体管理
没有防止文档之间重复节点和关系的措施,可能导致后续处理步骤中的可扩展性问题。
来源可追溯性
没有跟踪每个节点的来源,降低了信息本身的可靠性,无法验证信息。
(三)解决措施
针对节点类型增殖问题
更新提示,接受现有节点类型列表和一个 “主题” 字符串,作为提取实体类型的指导和限制。
针对重复实体管理问题
用集合替换列表,并在代码中添加检查,确保只提取唯一的节点和关系。
针对来源可追溯性问题
在文档的元数据中添加从每个文档中提取的节点列表,在创建知识图谱时,可以为每个文档创建节点,并建立文档节点与从该文档中提取的每个实体节点之间的关系,如 (:Document)-[:MENTIONS]->(:Entity)。
DATA_EXTRACTION_SYSTEM = """# Knowledge Graph Extraction for Rich Information Retrieval
## 1. Overview
You are an advanced algorithm designed to extract knowledge from various types of informational content. \
Your task is to build a knowledge graph that provides rich, contextual information for downstream tasks.
{subject}
## 2. Content Focus
- Extract detailed information about concepts, entities, processes, and their relationships from the given text.
- Prioritize information that provides rich context and is likely to be useful for answering a wide range of questions.
- Include relevant attributes, properties, and descriptive information for each extracted entity.
## 3. Node Extraction
- **Node IDs**: Use clear, unambiguous identifiers in Title Case. Avoid integers, abbreviations, and acronyms.
- **Node Types**: Use PascalCase. Be as specific and descriptive as possible to aid in Wikidata matching.
- Include all relevant attributes of the entity in the node properties.
- Extract and include alternative names or aliases for entities when present in the text.
- Following are some existing node types that were extracted from previous samples of the same document:\n{node_types}
## 4. Relationship Extraction
- Use SCREAMING_SNAKE_CASE for relationship types.
- Create detailed, informative relationship types that clearly describe the nature of the connection.
- Include directional relationships where applicable (e.g., PRECEDED_BY, FOLLOWED_BY instead of just RELATED_TO).
## 5. Contextual Information
- For each node and relationship, strive to capture contextual information that might be useful for answering questions.
- Include temporal information when available (e.g., dates, time periods, sequence of events).
- Capture geographical or spatial information if relevant.
## 6. Handling Definitions and Descriptions
- For key concepts, include concise definitions or descriptions as node properties.
- Capture any notable characteristics, functions, or use cases of entities.
## 7. Coreference and Consistency
- Maintain consistent entity references throughout the graph.
- Resolve coreferences to their most complete form, including potential aliases or alternative names.
## 8. Granularity
- Strike a balance between detailed extraction and maintaining a coherent graph structure.
- Create separate nodes for distinct concepts, even if closely related.
"""
from langchain_core.documents.base import Document
def merge_nodes(nodes: List[Node]) -> Node:
'''
Merges all the nodes with the same ID and type into a single node
The only difference in these nodes is their list of properties, aliases and definition so
I extract and combine a list of unique properties and aliases from all these nodes
and pick the longest definition to use as the definition of the merged node
Args:
nodes (List[Node]):- List of nodes to merge into one
Returns: A single Node object created by merging all the nodes
'''
props: List[Property] = []
definition = ""
aliases = set([])
max_def_len = -1
for node in nodes:
props.extend([
p for p in node.properties
if not p in props
])
if len(node.definition) >= max_def_len:
# Pick the longest definition based on an inaccurate assumption:
# longest description = most descriptive definition
definition = node.definition
max_def_len = len(node.definition)
aliases.update(set(node.aliases))
return Node(id=nodes[0].id, type=nodes[0].type, properties=props, definition=definition, aliases=aliases)
def docs2nodes_and_rels(docs: List[Document], text_subject: str = '', use_existing_node_types: bool = False) -> Tuple[List[Document], List[Node], List[Relationship]]:
'''
Extract the list of nodes and relationships from the list of documents
Args:
docs (List[Document]): List of documents
text_subject (str): The overall subject of the text that the given documents belong to. Default=''
use_existing_node_types (bool): Whether to use the node types of the already existing nodes in the
KG as a guide to the LLM. Default=False.
Returns:
A tuple containing the following lists:
docs (List[Document]): A list of the slightly modified input docs
nodes (List[Node]): The list of unique extracted nodes
rels (List[Relationship]): The list of extracted relationships
'''
# Only store unique nodes - Helps later when adding to KG
nodes_dict: Dict[str, list] = dict({})
rels: list = []
ex_node_types = set({})
if use_existing_node_types:
# get_existing_labels is a method that returns the set of labels of the already existing nodes in the KG
ex_node_types = get_existing_labels()
for i, doc in enumerate(docs):
output: KnowledgeGraph = data_ext_chain.invoke(
{
"subject": text_subject,
"input": doc.page_content,
"node_types": ','.join(list(ex_node_types))
}
)
output_nodes: List[Node] = format_nodes(output.nodes)
output_rels: List[Relationship] = format_rels(output.rels)
ntypes = set([n.type for n in output_nodes])
# Store nodes with same type and ID together so that they can be merged together later
dnodes_dict: Dict[str, List[str]] = {}
for n in output_nodes:
nk = f"{n.id}::{n.type}"
if nk in dnodes_dict:
if not n in dnodes_dict[nk]:
dnodes_dict[nk].append(n)
else:
dnodes_dict[nk] = [n]
for r in output_rels:
if not r in rels:
rels.append(r)
# Store Node IDs+Node Type of nodes mentioned in this doc/chunk in doc metadata
doc.metadata['mentions'] = list(dnodes_dict.keys())
nodes_dict = {**nodes_dict, **dnodes_dict}
# Update existing node types for next iteration
ex_node_types: set[str] = ex_node_types.union(ntypes)
# Merge all duplicate nodes (nodes with the same ID and type) into a single node
# This involves combining their properties, aliases and definition
nodes: List[Node] = [merge_nodes(nds) for _, nds in nodes_dict.items()]
return docs, nodes, list(rels)
通过利用 LLM 的结构化输出功能进行可靠的信息提取,同时设计了包含节点和关系的完整模式,不仅包括基本的 ID 和类型,还包括一些附加属性,以减少歧义。在提取过程中,通过解决节点类型增殖、重复实体管理和来源可追溯性等关键问题,确保了数据质量。接下来,我们还需要探索如何将这些结构化知识集成到知识图谱中(GraphRag-知识图谱结合LLM 的检索增强),并实现与各种智能应用的无缝对接。这涉及到更加复杂的技术和工具,如图数据库、知识图谱平台等。但无论如何,我们已经迈出了从非结构化PDF中提取结构化知识的关键一步,为未来的智能应用发展奠定了坚实的基础。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-07-17
2024-07-11
2024-08-13
2024-07-13
2024-07-12
2024-06-24
2024-07-08
2024-06-10
2024-07-26
2024-08-27
2024-12-16
2024-12-10
2024-12-04
2024-12-01
2024-11-30
2024-11-22
2024-11-04
2024-10-10