微信扫码
添加专属顾问
我要投稿
知识图谱(KG)作为表示和推理结构化知识的重要框架,在信息检索、问答系统和决策支持等领域发挥着关键作用。然而,知识图谱的不完整性严重限制了其实际应用效果。随着生成式AI特别是大型语言模型(LLMs)的快速发展,为知识图谱补全带来了新的机遇。本文提出的方法充分利用了LLM的预训练知识和推理能力,结合图的拓扑结构信息,实现了更高效的知识图谱补全。
生成式本体创建方法
拓扑信息增强的链接预测
候选解决方案生成机制
本文提出的本体生成方法包含以下关键步骤:
数据预处理
类别推断
关系映射
在知识图谱补全任务中,本文方法分为以下几个关键环节:
本体信息利用
拓扑信息整合
候选方案生成与选择
实验采用ILPC-small和ILPC-large两个数据集:
ILPC-small数据集统计:
ILPC-large数据集统计:
实验采用Hit@k (k=1,3,10)作为评估指标,主要发现包括:
LLM基础性能
候选方案增强效果
本体信息贡献
闭世界假设
图密度依赖
动态适应机制
外部信息整合
实验验证扩展
本文提出的方法在知识图谱补全任务中展现出显著优势,特别是:
该研究为知识图谱补全领域提供了新的研究思路,也为LLM在结构化知识处理方面的应用提供了有益参考。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-03-05
低成本+高性能+超灵活!Deepseek 671B+Milvus重新定义知识库搭建
2025-03-05
LlamaIndex+Phi-3:知识图谱生成的黄金组合
2025-03-04
一键发布知识图谱:Obsidian 与 Quartz 的高效协作
2025-03-04
构建智能知识库 - 知识获取:Obsidian Web Clipper 的 AI 自动化流程
2025-03-02
大模型时代的知识工程:企业级智能知识库构建与增强指南
2025-03-02
从 0 到 3000 节点: 我用 DeepSeek + NebulaGraph 构建农业知识图谱
2025-02-26
将知识图谱与大模型 (LLM) 协同化:实现语义增强智能的途径
2025-02-23
DeepSeek+dify知识库,查询数据库的两种方式(api+直连)
2025-01-02
2024-07-17
2025-01-03
2024-08-13
2024-07-11
2024-06-24
2024-08-27
2024-07-13
2024-06-10
2024-07-12
2025-02-13
2025-01-14
2025-01-10
2025-01-06
2025-01-02
2024-12-16
2024-12-10
2024-12-04