微信扫码
添加专属顾问
我要投稿
LangChain 非常强大的一点就是封装了非常多强大的工具可以直接使用。降低了使用者的学习成本。比如数据网页爬取。
在其官方文档-网页爬取中,也有非常好的示例。
信息爬取。
RAG 信息检索。
从 ceshiren 网站中获取每个帖子的名称以及其对应的url信息。
ceshiren论坛地址:https://ceshiren.com/
# 定义大模型
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
# 定义提取方法
def extract(content: str, schema: dict):
from langchain.chains import create_extraction_chain
return create_extraction_chain(schema=schema, llm=llm).invoke(content)
import pprint
from langchain_text_splitters import RecursiveCharacterTextSplitter
def scrape_with_playwright(urls, schema):
# 加载数据
loader = AsyncChromiumLoader(urls)
docs = loader.load()
# 数据转换
bs_transformer = BeautifulSoupTransformer()
# 提取其中的span标签
docs_transformed = bs_transformer.transform_documents(
docs, tags_to_extract=["span"]
)
# 数据切分
splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=1000, chunk_overlap=0)
splits = splitter.split_documents(docs_transformed)
# 因为数据量太大,输入第一片数据使用,传入使用的架构
extracted_content = extract(schema=schema, content=splits[0].page_content)
pprint.pprint(extracted_content)
return extracted_content
urls = ["https://ceshiren.com/"]
schema = {
"properties": {
"title": {"type": "string"},
"url": {"type": "string"},
},
"required": ["title", "url"],
}
extracted_content = scrape_with_playwright(urls, schema=schema)
了解网页爬取的实现思路以及相关技术。
通过LangChain实现爬取测试人网页的标题和url。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-24
不止语义检索,Milvus+LangChain全文检索RAG教程来了
2025-04-23
实现高效AI应用开发:LangChain、LLamaIndex 、HuggingFace
2025-04-23
AI应用我也迷茫....直到我发现LangChain
2025-04-23
Langchain 吐槽OpenAI根本不懂 AI agent和workflow?知识点全解析
2025-04-22
商用 AI Agent 的开发框架如何选择?
2025-04-18
扣子空间干掉了扣子自己(附系统提示词)
2025-04-18
怎样让LLM看懂你的接口?
2025-04-18
一文讲透 RAG、LangChain、Agent:AI 开发的 "三剑客 "如何协同作战
2024-10-10
2024-07-13
2024-04-08
2024-06-03
2024-09-04
2024-04-08
2024-08-18
2024-03-28
2024-06-24
2024-07-10