微信扫码
和创始人交个朋友
我要投稿
“ 通过在整个过程中保持上下文状态,代理可以处理复杂的多步骤工作流程,而不仅仅是简单的提取或匹配。这种方法使他们能够在协调不同系统组件的同时,构建有关他们正在处理的文档的深层背景。”
LlamaIndex
from llama_index.indices.managed.llama_cloud import LlamaCloudIndex
from llama_parse import LlamaParse
from typing import List, Optional
from pydantic import BaseModel, Field
from llama_index.llms.openai import OpenAI
# Setup Index
index = LlamaCloudIndex(
name="gdpr",
project_name="llamacloud_demo",
organization_id="cdcb3478-1348-492e-8aa0-25f47d1a3902",
# api_key="llx-..."
)
# Setup RAG proxy
# similarity_top_k=2,相邻前2回进行提取
retriever = index.as_retriever(similarity_top_k=2)
# Setup Parser
parser = LlamaParse(result_type="markdown")
# Setup env,包含大模型,parser proxy,RAG proxy
llm = OpenAI(model="gpt-4o")
workflow = ContractReviewWorkflow(
parser=parser,
guideline_retriever=retriever,
llm=llm,
verbose=True,
timeout=None,
)
# Setup 合同 Output 格式
class ContractClause(BaseModel):
clause_text: str = Field(..., description="The exact text of the clause.")
mentions_data_processing: bool = Field(False, description="True if the clause involves personal data collection or usage.")
mentions_data_transfer: bool = Field(False, description="True if the clause involves transferring personal data, especially to third parties or across borders.")
requires_consent: bool = Field(False, description="True if the clause explicitly states that user consent is needed for data activities.")
specifies_purpose: bool = Field(False, description="True if the clause specifies a clear purpose for data handling or transfer.")
mentions_safeguards: bool = Field(False, description="True if the clause mentions security measures or other safeguards for data.")
class ContractExtraction(BaseModel):
vendor_name: Optional[str] = Field(None, description="The vendor's name if identifiable.")
effective_date: Optional[str] = Field(None, description="The effective date of the agreement, if available.")
governing_law: Optional[str] = Field(None, description="The governing law of the contract, if stated.")
clauses: List[ContractClause] = Field(..., description="List of extracted clauses and their relevant indicators.")
# Setup 合同检查内容
class GuidelineMatch(BaseModel):
guideline_text: str = Field(..., description="The single most relevant guideline excerpt related to this clause.")
similarity_score: float = Field(..., description="Similarity score indicating how closely the guideline matches the clause, e.g., between 0 and 1.")
relevance_explanation: Optional[str] = Field(None, description="Brief explanation of why this guideline is relevant.")
# 级联检查项
class ClauseComplianceCheck(BaseModel):
clause_text: str = Field(..., description="The exact text of the clause from the contract.")
matched_guideline: Optional[GuidelineMatch] = Field(None, description="The most relevant guideline extracted via vector retrieval.")
compliant: bool = Field(..., description="Indicates whether the clause is considered compliant with the referenced guideline.")
notes: Optional[str] = Field(None, description="Additional commentary or recommendations.")
# Setup Contract Review Workflow
# 1.从知识库协议中提取结构化数据。
# 2.对于每个条款,根据 Setup 合同检查内容进行检索,看其是否符合准则。
# 3.生成最终摘要和判断结果。
from llama_index.core.workflow import (
Event,
StartEvent,
StopEvent,
Context,
Workflow,
step,
)
from llama_index.core.llms import LLM
from typing import Optional
from pydantic import BaseModel
from llama_index.core import SimpleDirectoryReader
from llama_index.core.schema import Document
from llama_index.core.agent import FunctionCallingAgentWorker
from llama_index.core.prompts import ChatPromptTemplate
from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.core.retrievers import BaseRetriever
from pathlib import Path
import logging
import json
import os
# 设置日志
_logger = logging.getLogger(__name__)
_logger.setLevel(logging.INFO)
# 开始设置 prompt
# 提取内容 prompt
CONTRACT_EXTRACT_PROMPT = """\
You are given contract data below. \
Please extract out relevant information from the contract into the defined schema - the schema is defined as a function call.\
{contract_data}
"""
# 内容和知识库匹配 prompt
CONTRACT_MATCH_PROMPT = """\
Given the following contract clause and the corresponding relevant guideline text, evaluate the compliance \
and provide a JSON object that matches the ClauseComplianceCheck schema.
**Contract Clause:**
{clause_text}
**Matched Guideline Text(s):**
{guideline_text}
"""
# 级联检查项 prompt
COMPLIANCE_REPORT_SYSTEM_PROMPT = """\
You are a compliance reporting assistant. Your task is to generate a final compliance report \
based on the results of clause compliance checks against \
a given set of guidelines.
Analyze the provided compliance results and produce a structured report according to the specified schema.
Ensure that if there are no noncompliant clauses, the report clearly indicates full compliance.
"""
# 报告输出格式 prompt
COMPLIANCE_REPORT_USER_PROMPT = """\
A set of clauses within a contract were checked against GDPR compliance guidelines for the following vendor: {vendor_name}.
The set of noncompliant clauses are given below.
Each section includes:
- **Clause:** The exact text of the contract clause.
- **Guideline:** The relevant GDPR guideline text.
- **Compliance Status:** Should be `False` for noncompliant clauses.
- **Notes:** Additional information or explanations.
{compliance_results}
Based on the above compliance results, generate a final compliance report following the `ComplianceReport` schema below.
If there are no noncompliant clauses, the report should indicate that the contract is fully compliant.
"""
class ContractExtractionEvent(Event):
contract_extraction: ContractExtraction
class MatchGuidelineEvent(Event):
clause: ContractClause
class MatchGuidelineResultEvent(Event):
result: ClauseComplianceCheck
class GenerateReportEvent(Event):
match_results: List[ClauseComplianceCheck]
class LogEvent(Event):
msg: str
delta: bool = False
# 工作流核心代码
class ContractReviewWorkflow(Workflow):
"""Contract review workflow."""
def __init__(self, parser: LlamaParse, guideline_retriever: BaseRetriever,
llm: LLM | None = None, similarity_top_k: int = 20, output_dir: str = "data_out",
**kwargs,) -> None:
"""Init params."""
super().__init__(**kwargs)
# 拿前面设置好的 llamaIndex 组件和环境
self.parser = parser
self.guideline_retriever = guideline_retriever
self.llm = llm or OpenAI(model="gpt-4o-mini")
self.similarity_top_k = similarity_top_k
# if not exists, create
out_path = Path(output_dir) / "workflow_output"
if not out_path.exists():
out_path.mkdir(parents=True, exist_ok=True)
os.chmod(str(out_path), 0o0777)
self.output_dir = out_path
async def parse_contract(self, ctx: Context, ev: StartEvent) -> ContractExtractionEvent:
# load output template file
contract_extraction_path = Path(
f"{self.output_dir}/contract_extraction.json"
)
if contract_extraction_path.exists():
if self._verbose:
ctx.write_event_to_stream(LogEvent(msg=">> Loading contract from cache"))
contract_extraction_dict = json.load(open(str(contract_extraction_path), "r"))
contract_extraction = ContractExtraction.model_validate(contract_extraction_dict)
else:
if self._verbose:
ctx.write_event_to_stream(LogEvent(msg=">> Reading contract"))
# 设置 llamaParam 解析文档
docs = SimpleDirectoryReader(input_files=[ev.contract_path]).load_data()
# 构造提取内容 prompt
prompt = ChatPromptTemplate.from_messages([
("user", CONTRACT_EXTRACT_PROMPT)
])
# 等待 LLM 返回结果,参数包含输入的文档,模型,prompt
contract_extraction = await llm.astructured_predict(
ContractExtraction,
prompt,
contract_data="\n".join([d.get_content(metadata_mode="all") for d in docs])
)
if not isinstance(contract_extraction, ContractExtraction):
raise ValueError(f"Invalid extraction from contract: {contract_extraction}")
# save output template to file
with open(contract_extraction_path, "w") as fp:
fp.write(contract_extraction.model_dump_json())
if self._verbose:
ctx.write_event_to_stream(LogEvent(msg=f">> Contract data: {contract_extraction.dict()}"))
return ContractExtractionEvent(contract_extraction=contract_extraction)
async def dispatch_guideline_match(self, ctx: Context, ev: ContractExtractionEvent) -> MatchGuidelineEvent:
"""For each clause in the contract, find relevant guidelines.
Use a map-reduce pattern.
"""
await ctx.set("num_clauses", len(ev.contract_extraction.clauses))
await ctx.set("vendor_name", ev.contract_extraction.vendor_name)
for clause in ev.contract_extraction.clauses:
ctx.send_event(MatchGuidelineEvent(clause=clause, vendor_name=ev.contract_extraction.vendor_name))
# 匹配知识库内容
async def handle_guideline_match(self, ctx: Context, ev: MatchGuidelineEvent) -> MatchGuidelineResultEvent:
"""Handle matching clause against guideline."""
# 构造查询 prompt
query = """Please find the relevant guideline from {ev.vendor_name} that aligns with the following contract clause:{ev.clause.clause_text}"""
# 查询知识库 Embedding
guideline_docs = self.guideline_retriever.retrieve(query)
guideline_text="\n\n".join([g.get_content() for g in guideline_docs])
if self._verbose:
ctx.write_event_to_stream(
LogEvent(msg=f">> Found guidelines: {guideline_text[:200]}...")
)
# 提取知识库相关内容
prompt = ChatPromptTemplate.from_messages([("user", CONTRACT_MATCH_PROMPT)])
# 等待 LLM 处理知识库内容和输入内容正确性,参数包含检查代理,prompt,知识库dump出来的graph,输入需要匹配文本
compliance_output = await llm.astructured_predict(
ClauseComplianceCheck,
prompt,
clause_text=ev.clause.model_dump_json(),
guideline_text=guideline_text
)
if not isinstance(compliance_output, ClauseComplianceCheck):
raise ValueError(f"Invalid compliance check: {compliance_output}")
return MatchGuidelineResultEvent(result=compliance_output)
# 匹配结果
async def gather_guideline_match(self, ctx: Context, ev: MatchGuidelineResultEvent) -> GenerateReportEvent:
"""Handle matching clause against guideline."""
num_clauses = await ctx.get("num_clauses")
events = ctx.collect_events(ev, [MatchGuidelineResultEvent] * num_clauses)
if events is None:
return
match_results = [e.result for e in events]
# save match results
match_results_path = Path(
f"{self.output_dir}/match_results.jsonl"
)
with open(match_results_path, "w") as fp:
for mr in match_results:
fp.write(mr.model_dump_json() + "\n")
return GenerateReportEvent(match_results=[e.result for e in events])
# 输出
async def generate_output(self, ctx: Context, ev: GenerateReportEvent) -> StopEvent:
if self._verbose:
ctx.write_event_to_stream(LogEvent(msg=">> Generating Compliance Report"))
# if all clauses are compliant, return a compliant result
non_compliant_results = [r for r in ev.match_results if not r.compliant]
# generate compliance results string
result_tmpl = """1. **Clause**: {clause}2. **Guideline:** {guideline}3. **Compliance Status:** {compliance_status}4. **Notes:** {notes}"""
non_compliant_strings = []
for nr in non_compliant_results:
non_compliant_strings.append(
result_tmpl.format(
clause=nr.clause_text,
guideline=nr.matched_guideline.guideline_text,
compliance_status=nr.compliant,
notes=nr.notes
)
)
non_compliant_str = "\n\n".join(non_compliant_strings)
prompt = ChatPromptTemplate.from_messages([
("system", COMPLIANCE_REPORT_SYSTEM_PROMPT),
("user", COMPLIANCE_REPORT_USER_PROMPT)
])
compliance_report = await llm.astructured_predict(
ComplianceReport,
prompt,
compliance_results=non_compliant_str,
vendor_name=await ctx.get("vendor_name")
)
return StopEvent(result={"report": compliance_report, "non_compliant_results": non_compliant_results})
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-12-26
深入了解 LlamaIndex 工作流程:事件驱动的 LLM 架构
2024-12-23
LlamaIndex工作流详解:提升数据处理效率的关键
2024-12-17
llamaindex实战-ChatEngine-Context(上下文)模式
2024-12-01
LlamaIndex,让AI唤醒你的数据
2024-11-29
llamaindex实战-Agent-自定义工具函数
2024-11-22
llamaindex实战-Agent-让Agent调用多个工具函数(本地部署)
2024-11-19
llamaindex实战-Workflow:工作流入门(本地部署断网运行)
2024-11-15
llamaindex实战-Agent-在Agent中使用RAG查询(本地部署)
2024-07-09
2024-04-20
2024-04-25
2024-06-05
2024-04-28
2024-05-09
2024-06-19
2024-07-20
2024-04-26
2024-04-19