微信扫码
与创始人交个朋友
我要投稿
随着生成性大型语言模型(LLMs)的快速发展,评估这些模型生成的文本质量,尤其是在开放式文本生成方面,一直是一个挑战。传统的手动评估方法耗时且成本高昂,而自动化评估方法如BLEU、Rouge和METEOR在开放式文本评估中存在局限性。最近的研究开始探索使用LLMs作为评估智能体,但这种方法存在不确定性和不稳定性。
为了解决这些问题,提出了MATEval框架,一个多智能体文本评估框架,旨在模拟人类协作讨论方法,通过多个智能体的交互来评估文本。
Multi-Agent文本评估框架
MATEval框架关键组成部分:
评估智能体(Evaluator Agent):这是框架中的主要评估实体,负责进行多轮的文本评估。评估智能体通过设计好的提示(prompts)引导,存储和处理来自其他智能体的陈述,并以此为参考进行对话历史记录。
反馈智能体(Feedback Agent):反馈智能体在每轮讨论后评估讨论的内容和质量,专注于识别低效的对话和分歧,并提出改进建议,以提高后续讨论的效率和共识。
总结智能体(Summarizer Agent):在所有讨论结束后,总结智能体负责整理整个讨论过程和结果,提供详细的评估报告,包括错误类型、具体位置、解释和得分。
自我反思(Self-reflection):在每轮讨论中,智能体会进行自我反思,考虑同伴的输入来丰富对问题的理解,并调整自己的陈述。
思维链(Chain-of-Thought, CoT)策略:通过提示引导智能体自主分解问题,并在每轮讨论中只关注一个子问题,从而深入分析文本。
反馈机制:在每轮讨论结束时,反馈机制通过提示引导反馈智能体总结和评估讨论,指导后续讨论减少重复,提高效率,并引导参与者达成共识。
输出格式:MATEval框架提供两种格式的评估报告:一种是基于问答(Q&A)的格式,便于计算相似度和相关性分数;另一种是文本报告格式,便于业务人员快速理解和迭代模型。
使用不同模型和MATEval不同策略在LOT/Ant数据集上评估结果与人类判断的相关性。最高相关性值以粗体显示。
MATEval: A Multi-Agent Discussion Framework for Advancing Open-Ended Text Evaluationhttps://arxiv.org/pdf/2403.19305.pdf
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-03-30
2024-04-26
2024-05-10
2024-05-28
2024-04-12
2024-04-25
2024-08-13
2024-05-14
2024-07-18
2024-05-06