微信扫码
与创始人交个朋友
我要投稿
PRompt Optimization in Multi-Step Tasks (PROMST): Integrating Human Feedback and Preference Alignment
PROMST:一种自动化优化大语言模型在解决多步骤任务中的提示词框架
1)本论文提出了一种名为PROMST (PROmpt Optimization in Multi-Step Tasks)的框架,旨在建立一种自动化框架来优化大语言模型(LLMs)在解决多步骤任务中的提示词(prompts)。
撰文:戴剑波;编辑:戴剑波
未经本公众号授权不得转载,欢迎转发。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-12-25
Claude 专家:提示词是释放AI潜能的关键
2024-12-24
怎么说大模型才会听 :零样本提示(Zero-Shot Prompting)
2024-12-22
MJ提示:希望
2024-12-22
剧本文字分镜的提示词
2024-12-20
写提示词要丢掉框架?跟"Prompt 之神"李继刚学习:AI 小白的 5 个进阶指南
2024-12-20
【全方位解析】企业如何通过提示词工程优化AI输出,提升市场竞争力—慢慢学AI045
2024-12-20
AI大厂Claude 官方深度解析:提示词工程的最佳实践
2024-12-19
PromptWizard:微软推出自家APE框架,主打“任务感知”,性能不错成本还低
2024-06-29
2024-08-20
2023-06-08
2024-06-27
2024-06-14
2024-07-09
2024-09-17
2024-07-12
2024-06-26
2024-09-06