微信扫码
添加专属顾问
我要投稿
这篇论文介绍了一种名为LATS(Language Agent Tree Search)的框架,它将语言模型在规划、行动和推理方面的优势结合起来,以增强决策能力。LATS借鉴了基于模型强化学习中常用的蒙特卡罗树搜索方法,并利用环境提供外部反馈,从而实现更明智和适应性更强的问题解决机制。实验结果表明,在编程、HotPotQA和WebShop等不同领域中,LATS能够有效地进行决策并保持竞争性的推理性能。例如,在HumanEval上使用GPT-4时,LATS取得了94.4%的编程成绩;在WebShop上使用GPT-3.5时,平均得分为75.9。这证明了该方法的有效性和通用性。
本文提出的LATS是一种基于蒙特卡罗树搜索(MCTS)的推理决策框架,旨在支持自然语言任务中的推理和决策。该框架通过将一个思考序列作为节点,使用预训练的语言模型来评估每个节点的价值,并根据环境反馈更新价值函数。同时,它还具有自我反思功能,可以从失败的轨迹中学习并提高其决策能力。
表1:关于推理、行动和规划的相关工作的总结。LATS 是第一个结合了这三个领域的设计的工作,使其能够应用于所有相应的任务。我们把搜索算法的使用称为规划,将语言模型生成的反馈用于自我反思,将过去文本语境的存储视为外部记忆,以供将来对解决方案进行更新。
从上表中可以看出LATS充分融合了计划、思考、行动、反思与记忆,效果也会更好。
方法改进
与传统的基于MCTS的推理决策框架相比,LATS的主要改进在于:
使用了蒙特卡罗树搜索算法,可以有效地探索可能的解决方案。
利用了预训练的语言模型来评估节点的价值,从而更好地指导搜索过程。
引入了自我反思机制,可以从失败的轨迹中学习并提高决策能力。
本文主要解决了自然语言任务中的推理和决策问题。具体来说,它可以用于以下场景:
主要有四个主要步骤:
总结一下,选择当前节点,行动、反思、评分,并将结果反向传播给父节点,同时根据节点数量是否达到上限以及结果情况决定是否继续向下延伸或输出结果。
LATS通过融合计划、思考、行动、反思与记忆,使用蒙特卡罗树搜索算法,相较ReAct、ToT、CoT、Reflection等框架具有显著优势,下图为LATS与其他框架的对比。
核心亮点之一在于引入了内部反思与外部条件反馈,将内外反馈条件作为记忆存储与利用,以获得更好的效果。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-24
从搜索到解决方案:解锁火山 DeepSearch 的“三连跳” MCP 玩法
2025-04-24
一文搞懂:RAG、Agent与多模态的行业实践与未来趋势
2025-04-24
字节扣子空间 VS 智谱AutoGLM,谁家Agent更好用?(附邀请码)
2025-04-24
Function Calling已经过时 ,MCP才是真正的大模型接口标准
2025-04-24
大模型技术创新驱动的AI生态和应用演进
2025-04-24
除了MCP我们还有什么?
2025-04-24
LLM 推理引擎之争:Ollama or vLLM ?
2025-04-24
刚刚,OpenAI发布GPT-image-1模型,更强吉卜力版本来啦
2024-08-13
2024-06-13
2024-08-21
2024-09-23
2024-07-31
2024-05-28
2024-08-04
2024-04-26
2024-07-09
2024-09-17