微信扫码
与创始人交个朋友
我要投稿
AI Agent(智能体)作为大模型的重要应用模式,能够通过使用外部工具来执行复杂任务,完成多步骤的工作流程。为了能全面评估模型的工具使用能力,司南及合作伙伴团队推出了 T-Eval 评测基准,相关成果论文已被ACL 2024主会录用。
因此,为了更全面地评估大语言模型的工具使用能力,司南及合作伙伴团队推出了 T-Eval (a step-by-step Tool Evaluation benchmark for LLMs) 评测基准,相较于之前整体评估模型的方式,论文中将大模型的工具使用分解为多个子过程,包括:规划、推理、检索、理解、指令跟随和审查。
然后,我们利用 GPT-3.5 生成了初始问题,并通过 GPT-4 进一步完善问题。之后,我们开发了一个多智能体框架,利用所提供的工具解决问题,同时收集解决方案路径和工具响应。最后,我们使用人类专家来挑选高质量样本。
细粒度评测:T-Eval将评测过程分解为多个子任务,分别评估模型在工具使用上的细粒度能力。
T-Eval 现已加入 OpenCompass 评测平台,更多详细内容可参考以下链接!
GitHub:
https://github.com/open-compass/T-Eval
OpenCompass官网:
https://hub.opencompass.org.cn/dataset-detail/T-Eval
联系我们:
opencompass@pjlab.org.cn
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-05-28
2024-04-26
2024-08-13
2024-08-21
2024-07-09
2024-04-11
2024-07-18
2024-08-04
2024-10-25
2024-07-01
2024-12-03
2024-12-01
2024-11-29
2024-11-26
2024-11-25
2024-11-21
2024-11-18
2024-11-14