AI知识库

53AI知识库

学习大模型的前沿技术与行业应用场景


大模型语义分析之嵌入(Embedding)模型
发布日期:2024-12-26 11:11:33 浏览次数: 1566 来源:AI探索时代


 嵌入是大模型的基础,而嵌入的底层结构就是向量,而表示方式就是矩阵 



嵌入——Embedding,可能有些人了解过这个词,也可能没了解过这个词;但不管怎么说,嵌入在大模型技术中扮演着非常重要的角色;它是很多上层技术的基础。


大模型的底层数学结构是向量,而由于计算机只能进行数值计算;因此向量在计算机中是通过矩阵结构进行表示的,优点就在于计算简单;并且能进行升维和降维操作。


嵌入就是把数据(包括文本,图像,音视频等多种模态的数据)向量化表示的技术!!!





大模型之嵌入——Embedding




今天在研究RAG技术的时候,一直在思考一个问题,嵌入;在RAG的流程中,第一步是文档加载,第二步就是文档切片然后调用嵌入模型把文档转化为向量模式。


所以,这里就产生了一个问题,那就是这个嵌入过程是什么样的?简单来说就是怎么把文本或图片等多种模态的数据,通过嵌入模型转化为向量数据?


嵌入模型不仅仅只是把文本或图片转换成向量模式,还有更重要的一点就是要保证嵌入文本的语义关系。所以,这个都是怎么实现的?



在文档分割的过程中,有一个很重要的环节就是文档切分,文档切分的不同方式直接影响到嵌入向量的语义效果;因此,在RAG中嵌入模型很重要,文档切分也同样重要。


在大模型中,比如以Transformer架构为例,其使用了自注意力机制来保证文档语义的连贯性;但文档数据输入大模型之前,同样必须转化为向量格式的数据才能被大模型所识别,然后进行处理。



但文档在输入大模型之前转换的向量是没有语义关系的;所以,大家是否发现大模型训练和嵌入大模型的区别?


普通大模型训练是学习文档中的语义关系;而嵌入模型是接受一个文档作为输入,然后根据自己习得的参数对文档进行语义转换,然后输出一段有语义关系的向量数据。


而文档中语义之间的关系,经过向量化之后是通过向量之间的数学关系来表示的;比如欧式距离,余弦值等。



关于文档向量化的过程,除了采用嵌入模型之外,还有其它多种方式来实现;比如说,One-Hot独热编码和词袋模型等;只不过热独编码和词袋模型无法保证文档的语义关系,虽然其也构建了词汇表,但每个词都是独立的,没有任何数学上的关系体现。


这篇文章说是介绍嵌入,不如说是自己思考问题的记录;今天看了大半天的嵌入问题,也查了很多资料;但总觉得是在雾里看花,很多问题都不明白,也抓不着重点。


记录几个问题:


嵌入是怎么理解语义的? 

大模型是怎么理解语义的? 

分块对语义的影响以及原因是什么? 

大模型训练的参数与语义理解的关系?


向量 矩阵 embedding transformer架构之间的关系是什么?


53AI,企业落地应用大模型首选服务商

产品:大模型应用平台+智能体定制开发+落地咨询服务

承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业

联系我们

售前咨询
186 6662 7370
预约演示
185 8882 0121

微信扫码

与创始人交个朋友

回到顶部

 
扫码咨询