微信扫码
添加专属顾问
我要投稿
OpenAI 近期推出了 Swarm 框架,这是 OpenAI 首次开源的项目。Swarm 是一个无状态、轻量级多代理框架,利用 “协程” 和 “交接” 的概念来协调多个 AI 代理。这将复杂的任务分解成更小的、更易管理的单元,从而简化了任务,而且人工智能代理可以在任何时候选择将对话交接给另一个代理。
与单个代理中管理大量提示和不同逻辑相比,Swarm是一种稳健且可扩展的方法。示例库提供了可以轻松实现的实用示例和代码。
# 客户服务协程示例
system_message = (
"You are a customer support agent for ACME Inc."
"Always answer in a sentence or less."
"Follow the following routine with the user:"
"1. First, ask probing questions and understand the user's problem deeper.\n"
" - unless the user has already provided a reason.\n"
"2. Propose a fix (make one up).\n"
"3. ONLY if not satesfied, offer a refund.\n"
"4. If accepted, search for the ID and then execute refund."
""
)
def look_up_item(search_query):
"""用于查询物品ID.
Search query can be a description or keywords."""
# 返回硬编码物品ID - 在真实代码中应该是一次查询
return "item_132612938"
def execute_refund(item_id, reason="not provided"):
print("Summary:", item_id, reason)
return "success"
# 交接函数示例
def transfer_to_agent_b():
return agent_b
agent_a = Agent(
name="Agent A",
instructions="You are a helpful agent.",
# 交接给 agent_b
functions=[transfer_to_agent_b],
)
agent_b = Agent(
name="Agent B",
instructions="Only speak in Haikus.",
)
def greet(context_variables, language):
user_name = context_variables["user_name"]
greeting = "Hola" if language.lower() == "spanish" else "Hello"
print(f"{greeting}, {user_name}!")
return "Done"
agent = Agent(
functions=[greet]
)
{
"type": "function",
"function": {
"name": "greet",
"description": "Greets the user. Make sure to get their name and age before calling.\n\nArgs:\n name: Name of the user.\n age: Age of the user.\n location: Best place on earth.",
"parameters": {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer"},
"location": {"type": "string"}
},
"required": ["name", "age"]
}
}
}
本地设置 - Swarm 几乎完全在客户端运行,这意味着您可以测试和运行基于代理的系统,而无需担心服务器端的依赖性。
Swarm库(实验性质)--这里有一个方便的 Python 库,它与示例一起实现了这些想法。可以将其视为构建自己的多代理系统的入门套件。在 examples 中包括了大量示例:
def escalate_to_human(summary):
"""Only call this if explicitly asked to."""
print("Escalating to human agent...")
print("\n=== Escalation Report ===")
print(f"Summary: {summary}")
print("=========================\n")
exit()
def transfer_to_sales_agent():
"""User for anything sales or buying related."""
return sales_agent
def transfer_to_issues_and_repairs():
"""User for issues, repairs, or refunds."""
return issues_and_repairs_agent
def transfer_back_to_triage():
"""Call this if the user brings up a topic outside of your purview,
including escalating to human."""
return triage_agent
triage_agent = Agent(
name="Triage Agent",
instructions=(
"You are a customer service bot for ACME Inc. "
"Introduce yourself. Always be very brief. "
"Gather information to direct the customer to the right department. "
"But make your questions subtle and natural."
),
tools=[transfer_to_sales_agent, transfer_to_issues_and_repairs, escalate_to_human],
)
def execute_order(product, price: int):
"""Price should be in USD."""
print("\n\n=== Order Summary ===")
print(f"Product: {product}")
print(f"Price: ${price}")
print("=================\n")
confirm = input("Confirm order? y/n: ").strip().lower()
if confirm == "y":
print("Order execution successful!")
return "Success"
else:
print("Order cancelled!")
return "User cancelled order."
sales_agent = Agent(
name="Sales Agent",
instructions=(
"You are a sales agent for ACME Inc."
"Always answer in a sentence or less."
"Follow the following routine with the user:"
"1. Ask them about any problems in their life related to catching roadrunners.\n"
"2. Casually mention one of ACME's crazy made-up products can help.\n"
" - Don't mention price.\n"
"3. Once the user is bought in, drop a ridiculous price.\n"
"4. Only after everything, and if the user says yes, "
"tell them a crazy caveat and execute their order.\n"
""
),
tools=[execute_order, transfer_back_to_triage],
)
def look_up_item(search_query):
"""Use to find item ID.
Search query can be a description or keywords."""
item_id = "item_132612938"
print("Found item:", item_id)
return item_id
def execute_refund(item_id, reason="not provided"):
print("\n\n=== Refund Summary ===")
print(f"Item ID: {item_id}")
print(f"Reason: {reason}")
print("=================\n")
print("Refund execution successful!")
return "success"
issues_and_repairs_agent = Agent(
name="Issues and Repairs Agent",
instructions=(
"You are a customer support agent for ACME Inc."
"Always answer in a sentence or less."
"Follow the following routine with the user:"
"1. First, ask probing questions and understand the user's problem deeper.\n"
" - unless the user has already provided a reason.\n"
"2. Propose a fix (make one up).\n"
"3. ONLY if not satesfied, offer a refund.\n"
"4. If accepted, search for the ID and then execute refund."
""
),
tools=[execute_refund, look_up_item, transfer_back_to_triage],
)
上述购物示例包括三个代理,以处理各种客户服务请求:
from swarm.repl import run_demo_loop
if __name__ == "__main__":
run_demo_loop(triage_agent)
使用辅助函数 run_demo_loop,帮助我们创建一个交互式 Swarm 会话。
Swarm 的 run() 函数类似于聊天完成 API 中的 chat.completions.create() 函数--它接收消息并返回消息,调用之间不保存任何状态。但重要的是,它还能处理代理函数的执行、交接、上下文变量引用,并能在返回用户之前进行多次交接。
Swarm 的 client.run() 核心实现了以下循环:
接下来让我们执行上面的示例,看看会发生什么?
上面体现了代理思考、代理交接、工具执行的完整过程,整个过程非常清晰!
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-03-10
FastGPT 4.9.0 :重塑知识库体验,多模态处理更强大
2025-03-10
Manus工作原理揭秘:解构下一代AI Agent的多智能体架构
2025-03-05
如何构建多模态AI知识库?
2025-03-02
从模糊到清晰,Agentic设计原则重塑AI Agent未来
2025-03-02
我为什么要卸载DeepSeek ?
2025-02-28
一键部署!阶跃星辰开源多模态模型上线火山引擎
2025-02-22
DeepSeek热潮背后,企业如何用多模态数据构建核心竞争力
2025-02-22
MNN 手机本地部署 DeepSeek R1 和多模态大模型,告别服务器繁忙!
2024-09-12
2024-06-14
2024-08-06
2024-05-30
2024-06-17
2024-08-30
2024-11-28
2024-04-21
2024-10-16
2024-10-07