微信扫码
添加专属顾问
我要投稿
1. 声明式编程:DSPy允许开发者描述其希望系统做什么,而不是如何去做。这种高级方法使得设计和修改复杂的RAG流水线变得更加容易。
2. 模块化架构:使用DSPy,可以轻松更换RAG系统的不同组件,例如检索器、排序器或语言模型,而无需重写大量代码。
3. 自动优化:DSPy包含用于自动优化RAG流水线的工具,从而减少了手动调优并提高了整体性能。
1. 提高灵活性:通过DSPy可以轻松尝试不同的检索和排序策略,甚至可以结合多种策略,而无需重写整个代码库。
2. 增强性能:DSPy的自动优化功能可以帮助调优RAG系统,以获得更好的性能,其性能通常会超过人工调优的系统。
3. 更易于调试和迭代:DSPy的声明性质使其更容易理解RAG流水线中发生的事情,从而加快调试和迭代的速度。
import dspy class RAG(dspy.Module):def __init__(self):self.retriever = dspy.Retrieve(k=3)self.generator = dspy.ChainOfThought("You are a helpful AI assistant.") def forward(self, query):context = self.retriever(query)response = self.generator(context=context, query=query)return response rag = RAG()response = rag("What is the capital of France?")print(response)
在这个示例中,定义了一个简单的RAG系统,其包含一个检索器和生成器。Forward()方法描述了系统中的信息流。DSPy负责处理底层的复杂性,使开发者能够专注于应用程序的高级逻辑。
与更多样化的知识源集成
高级多模态检索和生成
改进的上下文理解和利用
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-27
RAG技术:优化知识库,解决AI答非所问
2025-04-27
AI 写代码总是翻车?Upstash 创始人怒推 Context7:给 LLM 喂上最新鲜的官方文档。
2025-04-26
葵花宝典之「知识库」调优秘籍!RAG优化指南!
2025-04-26
RagFlow文档解析过程分析
2025-04-26
深度学习!构建基于LangGraph的RAG多智能体研究工具。
2025-04-26
用RAG与Agent提升企业问答效率:我的AI实践之路
2025-04-26
理解 RAG 第一部分:为什么需要它
2025-04-26
理解 RAG 第三部分:融合检索与重新排序
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-04-26
2025-04-25
2025-04-22
2025-04-22
2025-04-20
2025-04-19
2025-04-18
2025-04-16