微信扫码
与创始人交个朋友
我要投稿
来源:single430 | 编辑:DeepLearning笔记
InternVL 2.0 超越了大多数开源模型。它在各种能力上表现出与闭源商业模型相媲美的竞争力,包括文档和图表理解、信息图表问答、场景文本理解和 OCR 任务、科学和数学问题解决,以及文化理解和综合多模态能力。
具体细节可以看这两篇文章:
InternVL系列:通过开源套件缩小与商业多模态模型的差距—成为GPT-4o的开创性开源替代方案
InternVL 2.0:多模态大模型新标杆
InternVL发布了多个版本,如下:
① 首先下载模型到本地,各位可以从mdoelscope(需要注册)和HF下载(HF需要翻墙),不过也可以使用HF的镜像网站:https://hf-mirror.com/,具体下载命令如下:
pip install -U huggingface_hub
Linux: export HF_ENDPOINT=https://hf-mirror.com
Windows: $env:HF_ENDPOINT = "https://hf-mirror.com"
huggingface-cli download --local-dir-use-symlinks False --resume-download OpenGVLab/InternVL2-4B --local-dir OpenGVLab/InternVL2-4B
② 使用ms-swift进行微调,ms-swift已接入Internvl2系列模型,包括:Internvl2-2B, Internvl2-4B,Internvl2-8B,Internvl2-26B。命令安装:
# 设置pip全局镜像 (加速下载)pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/# 安装ms-swiftgit clone https://github.com/modelscope/swift.gitcd swiftpip install -e '.[llm]'
{"images": ["path/to/xxx.jpg"], "query": "描述图片内容", "response": "根据图片,里面xxx...", "history": [["query0", "response0"]]}{"query": "2+2等于多大", "response": "4", "history": [["query0", "response0"]]}{"images": ["path/to/xxx.jpg"], "query": "在以下图像中进行目标检测,并标出所有汽车。", "response": "<ref>汽车</ref><box>[[31, 530, 389, 944], [574, 533, 797, 875]]</box>", "history": []}
④ 微调命令如下,以下参数可以根据实际情况修改(CUDA_VISIBLE_DEVICES,batch_size,max_length等, model_type可以设置其它模型):
#!/bin/bash
export CUDA_VISIBLE_DEVICES=0,1
swift sft --model_type internvl2-4b \
--model_id_or_path /path/to/InternVL2-4B \
--gradient_checkpointing true \
--custom_train_dataset_path /path/to/all_finetune_data_train_swift.jsonl \
--custom_val_dataset_path /path/to/all_finetune_data_val_swift.jsonl \
--batch_size 4 \
--eval_batch_size 2 \
--gradient_accumulation_steps 1 \
--max_steps 20000 \
--eval_steps 1000 \
--save_steps 1000 \
--learning_rate 1e-4 \
--max_length 2048 \
--sft_type lora
# 直接推理
CUDA_VISIBLE_DEVICES=0 swift infer \
--ckpt_dir output/internvl2-4b/vx-xxx/checkpoint-xxx \
--custom_val_dataset_path /path/to/all_finetune_data_val_swift.jsonl
# 合并后推理
CUDA_VISIBLE_DEVICES=0 swift export \
--ckpt_dir output/internvl2-4b/vx-xxx/checkpoint-xxx \
--merge_lora true
CUDA_VISIBLE_DEVICES=0 swift infer \
--ckpt_dir output/internvl2-4b/vx-xxx/checkpoint-xxx-merged \
---custom_val_dataset_path /path/to/all_finetune_data_val_swift.jsonl
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=6):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
path = 'output/internvl2-4b/vx-xxx/checkpoint-xxx-merged'
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
# set the max number of tiles in `max_num`
pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
generation_config = dict(
num_beams=1,
max_new_tokens=1024,
do_sample=False,
)
# pure-text conversation (纯文本对话)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
# single-image single-round conversation (单图单轮对话)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}')
print(f'Assistant: {response}')
# single-image multi-round conversation (单图多轮对话)
question = '<image>\n描述图片中的详细内容.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}')
print(f'Assistant: {response}')
1) 使用lmdeploy v0.5.0, 需要先设置chat template. 创建如下json文件chat_template.json
{
"model_name":"internlm2",
"meta_instruction":"你是由上海人工智能实验室开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。",
"stop_words":["<|im_start|>", "<|im_end|>"]
}
2) 使用lmdeploy部署internvl的api服务
lmdeploy serve api_server output/internvl2-4b/vx-xxx/checkpoint-xxx-merged --model-name InternVL2-4B --server-port 9433 --chat-template chat_template.json
3) 使用OpenAI样式接口需要安装OpenAI
pip install openai
4) 接口调用
from openai import OpenAI
client = OpenAI(api_key='可不填', base_url='http://0.0.0.0:9433/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
model="InternVL2-4B",
messages=[{
'role': 'user',
'content': [{
'type': 'text',
'text': '描述这幅画',
}, {
'type': 'image_url',
'image_url': {
'url':
'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
},
}],
}],
temperature=0.8,
top_p=0.8
)
print(response)
* 以及我对一些数据集的整理,各位可自行下载:
* 部分标签文件这里下载
https://huggingface.co/OpenGVLab/InternVL/resolve/main/playground.zip
一:AI2D: ai2d_images (provided by InternLM-XComposer) -- 1.3GB
https://drive.google.com/file/d/1dqqa3MnrxMXaU_K9JA6C83je32ibwdOY/view?usp=sharing
二:ChartQA: ChartQA Dataset800+MB
https://huggingface.co/datasets/ahmed-masry/ChartQA/resolve/main/ChartQA%20Dataset.zip
三:COCO: train2017 18GB
http://images.cocodataset.org/zips/train2017.zip
四:DocVQA: train 6.6GB, val 825MB, test 879MB
https://datasets.cvc.uab.es/rrc/DocVQA/train.tar.gz
https://datasets.cvc.uab.es/rrc/DocVQA/val.tar.gz
https://datasets.cvc.uab.es/rrc/DocVQA/test.tar.gz
五:DVQA: images 5GB
https://drive.google.com/file/d/1iKH2lTi1-QxtNUVRxTUWFvUvRHq6HAsZ/view
六:GQA: images 20.3GB
https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip
七:LLaVA-Pretrain: images 25.5GB
https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/resolve/main/images.zip
八:OCR-VQA(图像问答,书籍封面): download script. We save all files as .jpg 20GB
https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing
九:SAM: We only use 000000~000050.tar for now. You can quickly download 9K images from here. 8GB
https://drive.google.com/file/d/1dKumdOKSXtV7lIXdrG7jsIK_z2vZv2gs/view?usp=drive_link
十:TextVQA: trainvalimages 6.6GB
https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
十一:SynthDoG-EN(OCR数据集): We only use 00000~00004 parquet files for now, with a total of 30K images. We provide the converted images. 2.2GB
https://huggingface.co/OpenGVLab/InternVL/resolve/main/synthdog-en-images.zip
十二:VisualGenome: part1 9.1GB, part2 5.1GB
https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip
https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip
十三:WebData: images. Only for academic usage. 9GB
https://drive.google.com/drive/folders/1tCUQ-sq6vdshZVkF0ZeF3K4eztkXJgax?usp=sharing
十四:GeoQA+(几何数学题): GeoQA+ images20MB
https://drive.google.com/file/d/1KL4_wIzr3p8XSKMkkLgYcYwCbb0TzZ9O/view
https://huggingface.co/OpenGVLab/InternVL/resolve/main/geoqa%2B_images.zip
参考:
1. https://github.com/OpenGVLab/InternVL2. https://github.com/modelscope/swift3. https://mp.weixin.qq.com/s/OUaVLkxlk1zhFb1cvMCFjg
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-07-11
2024-07-11
2024-07-09
2024-09-18
2024-06-11
2024-07-23
2024-07-20
2024-07-12
2024-07-26
2024-07-23
2024-11-18
2024-11-16
2024-11-16
2024-10-31
2024-10-31
2024-10-27
2024-10-26
2024-10-25