微信扫码
添加专属顾问
我要投稿
Paper: https://arxiv.org/abs/2408.06663
由于目前开源模型中,开放全量checkpoints的模型较少,并且实验成本较大,以下分析结果主要基于OLMo-1B模型(同时训练细节、预训练数据、微调数据都公开了)进行实验,微调数据详细如下表所示,
针对大模型在预训练过程中的checkpoints,进行下游任务zero-shot或few-shot测试,如上图可以发现,大模型随着训练步数的增加,并不是所有任务数据的效果会随之提高,部分任务数据在整个预训练过程中,基本没有变化。效果提高的任务数据,也主要在训练前期提高较多,后期趋于平稳。
模型在预训练过程中,更多在学习知识,即使学习更多,可能也不会使用。
如上图所示,可以发现,在预训练时表现较好的任务数据,在微调过程中并不会得到改善,即在预训练过程中已经获取了知识信息,微调则没有帮助。
但在预训练阶段表现不好的任务数据,微调模型的每个checkpoint都会有明显的改善,一般微调收益先增加再减少。
那么,如果模型在某一任务上一定需要下游微调时,可能早停的checkpoint效果更优。
从任务格式、任务迁移和领域知识三个维度来分析微调学到了哪些内容。
任务格式:利用三种任务格式(默认格式、IO格式、Intruct格式)验证大模型在不同checkpoint上的性能。发现:在预训练早期,微调格式与预训练格式一致可以获取更好的效果,随着预训练步数增加,大模型对格式的敏感性会随之下降,可以变的更加灵活。微调阶段可以教会大模型去适应任务格式。
任务迁移:很多研究已经发现模型微调会导致某些任务的改进,但另一些任务的退化。通过实验发现,在生成任务上微调,在其他生成任务和分类任务上验证基本无下降;在分类任务上微调,在其他分类任务上无下降,但在分类任务上有明显下降。
领域知识:模型在学习其他能力之后,是否一定会遗忘微调之前拥有的领域知识。如下图所示,对于不同任务的结论不一致,所有NLI数据在MNLI上微调后,都会得到提高;但在Paws微调后,其他释义检测数据集均有下降。意味着遗忘和学习都发生。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-03-10
基于 Apple Silicon 架构的Mac部署DeepSeek-R1-671B 模型本地化指南
2025-03-10
RoostGPT:改变了自动化软件测试的游戏规则
2025-03-09
8分钟打造一个DeepSeek API智能测试引擎:当咖啡还没凉,测试报告已出炉
2025-03-09
lceberg 助力 B 站商业化模型样本行级更新的实践
2025-03-09
单卡4090微调DeepSeek-R1-32B
2025-03-08
QwQ总结能力测评,32b小模型真能超过deepseek吗
2025-03-08
为什么vLLM做不到?解密Ollama越级部署黑科技:以DeepSeek-R1-8B为例
2025-03-07
为什么Manus底层模型没用DeepSeek?——Manus六问六答
2025-02-04
2025-02-04
2024-09-18
2024-07-11
2024-07-09
2024-07-11
2024-07-26
2025-02-05
2025-01-27
2025-02-01