AI知识库

53AI知识库

学习大模型的前沿技术与行业应用场景


实战 Transformers 模型微调之数据集处理库 Hugging Face Datasets
发布日期:2024-08-26 07:18:00 浏览次数: 1772 来源:智能体AI


在深度学习中,数据处理是模型训练的关键环节之一。Hugging Face Datasets 库提供了一套强大的工具来简化这一过程,使数据集的管理和预处理变得高效且直观。本文将详细介绍 Hugging Face Datasets 库的基本用法和数据预处理策略,并结合实际代码示例,帮助您掌握这一工具的使用方法。



一、Hugging Face Datasets 库简介

1. Hugging Face Datasets 库是什么?

Hugging Face Datasets 是一个开源 Python 库,旨在简化自然语言处理(NLP)、计算机视觉(CV)和音频任务的数据集处理。通过这个库,您可以轻松加载、处理和共享数据集,仅需一行代码即可完成大部分数据集的加载工作。它与 Hugging Face Hub 深度集成,使得数据集的管理和共享变得更加便捷。



2. 使用 Datasets 下载开源数据集

通过 datasets 库,您可以轻松下载和加载各种开源数据集。以下是一个示例,演示如何下载并加载 GLUE 数据集中的 MRPC 任务:
from datasets import load_dataset
# 下载并加载 GLUE 数据集的 MRPC 任务dataset = load_dataset('glue', 'mrpc')
# 打印数据集的基本信息print(dataset)
在上述代码中,我们使用 load_dataset 函数加载了 GLUE 数据集的 MRPC 任务。这个函数会自动从 Hugging Face Hub 下载数据集并进行基本的预处理。


3. Datasets.load_dataset 实现原理简介

datasets.load_dataset() 函数背后使用了 DatasetBuilder 类,该类负责数据集的下载和构建。该函数首先检查本地缓存是否存在数据集,如果缓存中没有,则从 Hugging Face Hub 下载数据。然后,DatasetBuilder 类将数据集加载到内存中,并进行初步的处理。


4. 构造 DatasetBuilder 类的主要配置 BuilderConfig

在构造自定义数据集时,DatasetBuilder 类使用 BuilderConfig 类来配置数据集的各种属性。例如,您可以指定数据集的类别标签或其他属性。以下是如何创建自定义配置的示例:
from datasets import DatasetBuilder, BuilderConfig
class CustomDatasetBuilder(DatasetBuilder):BUILDER_CONFIGS = [BuilderConfig(name="custom_config", description="A custom dataset configuration")]
def _info(self):return DatasetInfo(description="Custom dataset",features=Features({"text": Value(dtype="string"),"label": ClassLabel(names=["negative", "positive"])}))
def _split_generators(self, dl_manager):# 实现数据下载和划分的逻辑pass
def _generate_examples(self, filepath):# 实现数据生成的逻辑pass
在这个示例中,我们定义了一个名为 CustomDatasetBuilder 的数据集构建器,并指定了一个自定义的 BuilderConfig。_info 方法定义了数据集的基本信息,包括数据特征和标签。


5. 实际构造数据集的类 DatasetBuilder

DatasetBuilder 类是数据集构建的核心,通过继承和实现其中的方法,我们可以创建自定义的数据集。例如,您可以实现数据的下载、处理和生成逻辑:
from datasets import DatasetBuilder
class MyDatasetBuilder(DatasetBuilder):def _split_generators(self, dl_manager):# 下载数据集并返回数据划分return [SplitGenerator(name="train", gen_kwargs={"filepath": "path/to/train_data"}),SplitGenerator(name="test", gen_kwargs={"filepath": "path/to/test_data"})]
def _generate_examples(self, filepath):# 从文件中读取数据并生成示例with open(filepath, "r") as file:for id_, line in enumerate(file):                yield id_, {"text": line.strip(), "label": 1}  # 示例标签


6. Datasets 帮助构建不同用途的数据集

使用 Hugging Face Datasets 库,您可以轻松创建训练集、验证集和测试集。只需在数据集构建器中定义不同的数据划分,即可实现这一目标:
dataset = load_dataset('glue', 'mrpc', split='train')  # 加载训练集


二、数据预处理策略:填充与截断

在处理数据时,填充(Padding)和截断(Truncation)是两种常见的预处理策略。这些策略确保模型输入的数据符合要求,并提高训练效率。

1. 数据预处理策略:填充(Padding)

填充是将序列扩展到固定长度,以便于批处理。以下是使用 Hugging Face Datasets 库进行填充的示例:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def preprocess_function(examples):return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)
dataset = load_dataset('glue', 'mrpc')dataset = dataset.map(preprocess_function, batched=True)
在这个示例中,我们使用 AutoTokenizer 对数据进行填充,将所有输入序列扩展到最大长度 128。


2. 数据预处理策略:截断(Truncation)

截断是将超出最大长度的数据裁剪掉,以避免模型处理过长的输入数据:
def preprocess_function(examples):return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)
dataset = load_dataset('glue', 'mrpc')dataset = dataset.map(preprocess_function, batched=True)
在上述代码中,truncation=True 参数确保了输入序列被截断到最大长度 128。


三、使用 Datasets.map 方法处理数据集


datasets.map 方法允许我们对数据集进行批量处理。通过将自定义的预处理函数应用于数据集,可以实现高效的数据处理和转换:
def preprocess_function(examples):return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)
# 使用 map 方法应用预处理函数processed_dataset = dataset.map(preprocess_function, batched=True)
# 打印处理后的数据集样本print(processed_dataset)
在这个示例中,datasets.map 方法将 preprocess_function 应用到整个数据集,从而实现批量的填充和截断。


四、总结

Hugging Face Datasets 库提供了强大的数据集管理和处理功能,使得数据的准备和处理变得更加高效。通过掌握库的基本用法和数据预处理策略,您可以更好地为 Transformers 模型的微调做好数据准备。希望本文能帮助您更好地理解和使用 Hugging Face Datasets 库,提高模型训练的效果。


53AI,企业落地应用大模型首选服务商

产品:大模型应用平台+智能体定制开发+落地咨询服务

承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业

联系我们

售前咨询
186 6662 7370
预约演示
185 8882 0121

微信扫码

与创始人交个朋友

回到顶部

 
扫码咨询