微信扫码
添加专属顾问
我要投稿
from datasets import load_dataset
# 下载并加载 GLUE 数据集的 MRPC 任务
dataset = load_dataset('glue', 'mrpc')
# 打印数据集的基本信息
print(dataset)
from datasets import DatasetBuilder, BuilderConfig
class CustomDatasetBuilder(DatasetBuilder):
BUILDER_CONFIGS = [
BuilderConfig(name="custom_config", description="A custom dataset configuration")
]
def _info(self):
return DatasetInfo(
description="Custom dataset",
features=Features({
"text": Value(dtype="string"),
"label": ClassLabel(names=["negative", "positive"])
})
)
def _split_generators(self, dl_manager):
# 实现数据下载和划分的逻辑
pass
def _generate_examples(self, filepath):
# 实现数据生成的逻辑
pass
from datasets import DatasetBuilder
class MyDatasetBuilder(DatasetBuilder):
def _split_generators(self, dl_manager):
# 下载数据集并返回数据划分
return [
SplitGenerator(name="train", gen_kwargs={"filepath": "path/to/train_data"}),
SplitGenerator(name="test", gen_kwargs={"filepath": "path/to/test_data"})
]
def _generate_examples(self, filepath):
# 从文件中读取数据并生成示例
with open(filepath, "r") as file:
for id_, line in enumerate(file):
yield id_, {"text": line.strip(), "label": 1} # 示例标签
dataset = load_dataset('glue', 'mrpc', split='train') # 加载训练集
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def preprocess_function(examples):
return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)
dataset = load_dataset('glue', 'mrpc')
dataset = dataset.map(preprocess_function, batched=True)
def preprocess_function(examples):
return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)
dataset = load_dataset('glue', 'mrpc')
dataset = dataset.map(preprocess_function, batched=True)
def preprocess_function(examples):
return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)
# 使用 map 方法应用预处理函数
processed_dataset = dataset.map(preprocess_function, batched=True)
# 打印处理后的数据集样本
print(processed_dataset)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-25
DeepSeek + Dify 企业级大模型私有化部署指南
2025-04-24
自主构建MCP,轻松实现云端部署!
2025-04-24
大模型微调框架LLaMA-Factory
2025-04-23
Unsloth:提升 LLM 微调效率的革命性开源工具
2025-04-23
超越 DevOps?VibeOps 引领 AI 驱动的开发革命
2025-04-23
大模型想 “专精” 特定任务?这 3 种 Addition-Based 微调法别错过
2025-04-23
重参数化微调:揭秘LoRA家族让大模型训练成本暴降的方法
2025-04-23
为什么全参数微调能让大模型从“通才”变“专才”?
2025-02-04
2025-02-04
2024-09-18
2024-07-11
2024-07-09
2024-07-11
2024-07-26
2025-02-05
2025-01-27
2025-02-01
2025-04-23
2025-04-20
2025-04-01
2025-03-31
2025-03-20
2025-03-16
2025-03-16
2025-03-13