微信扫码
添加专属顾问
我要投稿
掌握DeepSeek-R1模型本地部署的关键要点。 核心内容: 1. DeepSeek-R1模型的硬件配置要求概览 2. 基础模型与蒸馏模型的详细配置指南 3. 量化优化和推理框架选择建议
随着DeepSeek-V3与R1的持续爆火,国内各个厂商掀起了一场接入或适配DeepSeek模型的浪潮,这无疑是一件好事。同时,也有越来越多的用户或公司想要在本地部署DeepSeek模型,体验其带来的便捷功能或二次开发,但DeepSeek模型部署时对硬件有一定要不,以下这DeepSeek-R1的基础模型及蒸馏模型的部署硬件要求进行整理汇总。
针对DeepSeek-R1模型本地部署与使用的通用建议
使用蒸馏模型时,CPU配置应该尽量跟同等参数规模的DeepSeek-R1模型靠近或略低。本人在本地使用一个NVIDIA A40也成功部署了DeepSeek-R1-Distill-Llama-70B,试用着直接使用ollama或使用python程序向其提问,其回答问题的速度与准确性(只针对所提普通问题而言)还能接受。
另外,在部署与使用AI模型过程中,我们应该根据自己的需求从较小的模型开始部署进行试用,如有需要再升级至更高参数规模的模型,在满足需求的同时也可以避免资源的浪费。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-02-04
2025-02-04
2024-09-18
2024-07-11
2024-07-09
2024-07-11
2024-07-26
2025-02-05
2025-01-27
2025-02-01
2025-04-20
2025-04-01
2025-03-31
2025-03-20
2025-03-16
2025-03-16
2025-03-13
2025-03-13