微信扫码
与创始人交个朋友
我要投稿
Langchain-core:提供基本支撑,支持并行处理、追踪、回调、批量、流式操作、同步等功能。
Langchain-community:整合第三方工具,如模型操作、提示词模板、文件解析、分块、向量化、embedding 等。
Langchain:提供链(Chains)和代理(Agents),用于处理复杂业务逻辑和与外部 API 交互。
2. LangChain Templates:提供一系列容易部署的参考架构,适用于各种任务。
3. LangServe:用于将 LangChain 链部署为 REST API 的库。
4. LangSmith:开发者平台,可提供调试、测试、评估和监控基于任何语言模型框架构建的链,并能无缝与 LangChain 集成。
以下样例展示了如何安装依赖、导入模块、进行 LCEL 语法操作以及引入输出解析器。
# 安装依赖 pip install langchain langchain-openai
from langchain_openai import ChatOpenAI
# 确认环境变量中已经配置OPENAI_API_KEY
llm = ChatOpenAI()
# 导入提示词模板
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages([
("system", "You are world class technical documentation writer."),
("user", "{input}")
])
# LCEL语法操作
chain = prompt | llm
chain.invoke({"input": "how can langsmith help with testing?"})
# 引入输出解析器
from langchain_core.output_parsers import StrOutputParser
output_parser = StrOutputParser()
chain = prompt | llm | output_parser
chain.invoke({"input": "how can langsmith help with testing?"})
LangChain 作为大模型应用的构建框架,通过解决诸多开发中的问题,为大模型应用的开发提供了有效解决方案。它帮助开发者在语言模型领域实现了许多复杂操作,让构建现代、高效、安全的语言模型应用变得更加轻松。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-11-13
只需8步,手把手教你用LangGraph创建AI智能体
2024-11-13
使用 LangChain 建立一个会话式的 RAG Agent 系统
2024-11-12
一文深度了解Agent智能体以及认知架构
2024-11-12
使用LangChain建立检索增强生成(RAG)系统
2024-11-11
Qwen-Agent 核心点说明
2024-11-11
吴恩达分享五个AI趋势,重点谈了多AI代理的美好前景
2024-11-11
使用 LangChain 构建一个 Agent(智能体/代理)
2024-11-10
使用 LangChain 构建一个有记忆的聊天机器人
2024-08-18
2024-04-08
2024-06-03
2024-04-08
2024-04-17
2024-06-24
2024-04-12
2024-04-10
2024-07-01
2024-04-11
2024-10-30
2024-10-11
2024-08-18
2024-08-16
2024-08-04
2024-07-29
2024-07-28
2024-07-27