微信扫码
与创始人交个朋友
我要投稿
引言
简介
编译Android可用的模型
编译apk
手机上运行
清明时节雨纷纷,路上行人欲断魂。
小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖青团的小女孩,紧接前文:
Code Llama实战(下篇)-本地部署、量化及GPT-4对比
多模态大模型:浦语·灵笔InternLM-XComposer解读、实战和思考
实测Claude 3有感,OpenAI员工为啥没有竞业协议?
今天这篇小作文主要介绍如何将阿里巴巴的千问大模型Qwen 1.8B部署到手机端,实现离线、断网条件下使用大模型。主要包括以下几个步骤:
如需与小编进一步交流,可以在微信公众号《小窗幽记机器学习》上添加小编微信好友。
为将Qwen大模型部署到手机,实现断网下Qwen模型正常使用,本文选择MLC-LLM框架。
MLC LLM(机器学习编译大型语言模型,Machine Learning Compilation for Large Language Models) 是一种高性能的通用部署解决方案,将任何语言模型本地化部署在各种硬件后端和本机应用程序上,并为每个人提供一个高效的框架,以进一步优化自己模型性能。该项目的使命是使每个人都能够使用ML编译技术在各种设备上本机开发、优化和部署AI模型。
以下将以Qwen1.5-1.8B-Chat为例,详细说明如何利用mlc-llm将该模型部署到Android手机上,最终实现每秒约20个token的生成速度。以下命令执行都在mlc-llm的目类下执行。囿于篇幅,将在后文,以上篇名义补充介绍对应的环境安装和配置等工作。
MODEL_NAME=Qwen1.5-1.8B-Chat
QUANTIZATION=q4f16_1
# convert weights
mlc_llm convert_weight /share_model_zoo/LLM/Qwen/$MODEL_NAME/ --quantization $QUANTIZATION -o dist/$MODEL_NAME-$QUANTIZATION-MLC/
通过上述命令,将hf格式的Qwen模型转为mlc-llm支持的模型格式,结果文件存于:dist/Qwen1.5-1.8B-Chat-q4f16_1-MLC
# 生成配置文件
mlc_llm gen_config /share_model_zoo/LLM/Qwen/$MODEL_NAME/ --quantization $QUANTIZATION --model-type qwen2 --conv-template chatml --context-window-size 4096 -o dist/${MODEL_NAME}-${QUANTIZATION}-MLC/
此时生成的配置文件dist/Qwen1.5-1.8B-Chat-q4f16_1-MLC/mlc-chat-config.json
信息:
{
"model_type": "qwen2",
"quantization": "q4f16_1",
"model_config": {
"hidden_act": "silu",
"hidden_size": 2048,
"intermediate_size": 5504,
"num_attention_heads": 16,
"num_hidden_layers": 24,
"num_key_value_heads": 16,
"rms_norm_eps": 1e-06,
"rope_theta": 1000000.0,
"vocab_size": 151936,
"context_window_size": 4096,
"prefill_chunk_size": 4096,
"tensor_parallel_shards": 1,
"head_dim": 128,
"dtype": "float32"
},
"vocab_size": 151936,
"context_window_size": 4096,
"sliding_window_size": -1,
"prefill_chunk_size": 4096,
"attention_sink_size": -1,
"tensor_parallel_shards": 1,
"mean_gen_len": 128,
"max_gen_len": 512,
"shift_fill_factor": 0.3,
"temperature": 0.7,
"presence_penalty": 0.0,
"frequency_penalty": 0.0,
"repetition_penalty": 1.1,
"top_p": 0.8,
"conv_template": {
"name": "chatml",
"system_template": "<|im_start|>system\n{system_message}",
"system_message": "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.",
"add_role_after_system_message": true,
"roles": {
"user": "<|im_start|>user",
"assistant": "<|im_start|>assistant"
},
"role_templates": {
"user": "{user_message}",
"assistant": "{assistant_message}",
"tool": "{tool_message}"
},
"messages": [],
"seps": [
"<|im_end|>\n"
],
"role_content_sep": "\n",
"role_empty_sep": "\n",
"stop_str": [
"<|im_end|>"
],
"stop_token_ids": [
2
],
"function_string": "",
"use_function_calling": false
},
"pad_token_id": 151643,
"bos_token_id": 151643,
"eos_token_id": [
151645,
151643
],
"tokenizer_files": [
"tokenizer.json",
"vocab.json",
"merges.txt",
"tokenizer_config.json"
],
"version": "0.1.0"
}
# 进行模型编译:
# 2. compile: compile model library with specification in mlc-chat-config.json
mkdir dist/libs
mlc_llm compile ./dist/${MODEL_NAME}-${QUANTIZATION}-MLC/mlc-chat-config.json --device android -o ./dist/libs/${MODEL_NAME}-${QUANTIZATION}-android.tar
生成dist/libs/Qwen1.5-1.8B-Chat-q4f16_1-android.tar
文件。
# Configure list of models
vim ./android/library/src/main/assets/app-config.json
将./android/library/src/main/assets/app-config.json
改为:
{
"model_list": [
{
"model_url": "https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat",
"model_lib": "qwen2_q4f16_1",
"estimated_vram_bytes": 4348727787,
"model_id": "Qwen1.5-1.8B-Chat-q4f16_1" # 手机上模型目录要跟这个一致,不然无法加载
}
],
"model_lib_path_for_prepare_libs": {
"qwen2_q4f16_1": "libs/Qwen1.5-1.8B-Chat-q4f16_1-android.tar"
}
}
需要查看以下系统变量:
echo $ANDROID_NDK # Android NDK toolchain
echo $TVM_NDK_CC # Android NDK clang
echo $JAVA_HOME # Java
export TVM_HOME=/share/Repository/mlc-llm/3rdparty/tvm # mlc-llm 中的 tvm 目类
echo $TVM_HOME # TVM Unity runtime
是否符合预期。
# Bundle model library
cd ./android/library
./prepare_libs.sh
上述脚本会基于rustup
安装aarch64-linux-android
,如果比较慢,可以进行如下配置:
export RUSTUP_DIST_SERVER=https://mirrors.tuna.tsinghua.edu.cn/rustup
export RUSTUP_UPDATE_ROOT=https://mirrors.tuna.tsinghua.edu.cn/rustup/rustup
再执行上述脚本。
修改android/gradle/wrapper/gradle-wrapper.properties
,
将原始的内容:
#Thu Jan 25 10:19:50 EST 2024
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-8.5-bin.zip
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
可以看出,gradle-8.5-bin.zip的路径是:android/gradle/wrapper/dist/gradle-8.5-bin.zip
这里需要注意,wrapper/dists
的完整路径其实是/root/.gradle/wrapper/dists
修改为:
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
distributionUrl=dist/gradle-8.5-bin.zip
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
需要注意,distributionUrl 这个的base目录其实是mlc-llm
目录下的android/gradle/wrapper
。
# Build android app
cd .. && ./gradlew assembleDebug
编译生成的Android apk 文件位于:app/build/outputs/apk/debug/app-debug.apk
将手机设置成debug模式,数据线连接手机,正常连接之后在电脑执行以下命令,将上面编译出的apk安装到Android手机上:
adb install app-debug.apk
PS: 需要预先在本机电脑上安装 adb 命令。
# 改名,从而适配之前的配置信息
mv Qwen1.5-1.8B-Chat-q4f16_1-MLC Qwen1.5-1.8B-Chat-q4f16_1
# 将模型文件推送到手机的 /data/local/tmp/ 目类
adb push Qwen1.5-1.8B-Chat-q4f16_1 /data/local/tmp/
adb shell "mkdir -p /storage/emulated/0/Android/data/ai.mlc.mlcchat/files/"
adb shell "mv /data/local/tmp/Qwen1.5-1.8B-Chat-q4f16_1 /storage/emulated/0/Android/data/ai.mlc.mlcchat/files/"
实测大约1s可以生成20个token。
53AI,企业落地应用大模型首选服务商
产品:大模型应用平台+智能体定制开发+落地咨询服务
承诺:先做场景POC验证,看到效果再签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-03-30
2024-04-26
2024-05-10
2024-05-28
2024-04-12
2024-04-25
2024-05-14
2024-07-18
2024-08-13
2024-04-26