微信扫码
添加专属顾问
我要投稿
ML-Workspace
。MyFirstMLWorkspace
。from azureml.core import Workspace, Dataset # 连接到你的工作区ws = Workspace.from_config() # 上传CSV文件并创建数据集datastore = ws.get_default_datastore()datastore.upload_files(['./data/train.csv'], target_path='train-data/', overwrite=True) # 创建一个Tabular数据集dataset = Dataset.Tabular.from_delimited_files(path=[(datastore, 'train-data/train.csv')]) # 打印前5行数据df = dataset.to_pandas_dataframe()print(df.head())
from azureml.core import Experiment, ScriptRunConfig, Workspacefrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.ensemble import RandomForestClassifierfrom joblib import dump # 加载数据集data = load_iris()X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2) # 训练模型clf = RandomForestClassifier()clf.fit(X_train, y_train) # 保存模型dump(clf, 'iris_model.pkl') # 上传模型到Azurews = Workspace.from_config()model = ws.models.register(model_path='iris_model.pkl', model_name='iris_model')print(f"模型已注册为:{model.name}, 版本:{model.version}")
from azureml.core import Model, Webservice, Workspacefrom azureml.core.model import InferenceConfig # 加载工作区ws = Workspace.from_config() # 获取注册的模型model = Model(ws, name='iris_model') # 定义推理环境inference_config = InferenceConfig(entry_script='score.py', environment=myenv) # 创建容器实例服务service = Webservice.deploy_from_model(ws, name='iris-service', models=[model], inference_config=inference_config, deployment_config=None)service.wait_for_deployment(show_output=True) print(f"服务已部署在:{service.scoring_uri}")
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2024-03-30
2024-05-09
2024-07-23
2024-07-07
2025-02-12
2024-07-01
2024-06-24
2024-06-23
2024-10-20
2024-06-08
2025-04-13
2025-04-11
2025-04-03
2025-03-30
2025-03-28
2025-03-26
2025-03-13
2025-03-12